Chvátal-Erdős condition and pancyclism Evelyne FLANDRIN^{*} Hao LI^{*} Antoni MARCZYK[†] Ingo SCHIERMEYER[‡] Mariusz WOŹNIAK[†]

February 17, 2005

Abstract

The well-known Chvátal-Erdős theorem states that if the stability number α of a graph G is not greater than its connectivity then G is hamiltonian. In 1974 Erdős showed that if, additionaly, the order of the graph is sufficiently large with respect to α , then G is pancyclic. His proof is based on the properties of cycle-complete graph Ramsey numbers. In this paper we show that a similar result can be easily proved by applying only classical Ramsey numbers.

Keywords: hamiltonian graphs, pancyclic graphs, cycles, connectivity, stability number.

1991 Mathematics Subject Classification: 05C38, 05C45.

1 Introduction

We use Bondy and Murty's book [5] for terminology and notation not defined here and consider finite, undirected and simple graphs only. For a graph Gwe denote by V = V(G) its vertex-set and by E = E(G) its set of edges. The symbols $\alpha = \alpha(G)$ and $\kappa = \kappa(G)$ stand for the stability number and

^{*}L R I, UMR 8623, Bât. 490, Université de Paris-Sud, 91405 Orsay, France

[†]A G H University of Science and Technology, Faculty of Applied Mathematics, Al. Mickiewicza 30, 30-059 Kraków, Poland

[‡]Fakultät für Mathematik und Informatik, Technische Universität Bergakademie Freiberg, D-09596 Freiberg, Germany