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Abstract. In [2], it was shown that the vertex degrees in an arbitrarily vertex decomposable
tree are bounded above by 6. We establish several existence and non-existence results for such
trees, and improve the upper bound of the vertex degrees to 5, using purely combinatorial
methods.

1. Arbitrarily vertex-decomposable trees

1.1. Statement of the problem

Definition 1.1 A tree T is arbitrarily vertex-decomposable if for every partition n =
a1 + a2 + · · · + ak of n into positive integers, there is a partition of the vertex set VT of
T into subsets of size a1, a2, . . . , ak such that the induced subgraph on each subset is
connected. AVT stands for “arbitrarily vertex-decomposable tree.”

Definition 1.2 A comet is a tree T in which exactly one vertex c has degree greater
than 2. We call c the central vertex of T . An arm of a comet T is a connected component
of the induced subgraph on VT − {c}.

We denote a comet with central vertex of degree ∆ as S(a1, a2, . . . , a∆), where a1, a2, . . . , a∆

are the lengths of the arms; thus |S(a1, a2, . . . , a∆)| = 1+a1+a2+ · · ·+a∆. See Figure 1.1.
In this paper for convenience we assume a1 ≤ a2 ≤ · · · ≤ a∆. We reserve n to stand

for the number of vertices in a tree.

*
Figure 1.1: S(3, 5, 5, 9)
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Theorem 1.3 There is no AVT with ∆(T ) ≥ 7.

This is Theorem 13 in [2]. In the same paper the following question appeared.

Conjecture 1.4 There is no AVT with ∆(T ) ≥ 5.

This conjecture remains unproven, yet we show in this paper that there is no AVT
with ∆(T ) ≥ 6.

1.2. Infinite classes of AVTs

Since a path P is obviously an AVT, we have AVTs for every positive integer n.�
Figure 1.2: Any path P is an AVT (with ∆ = 2)

Some nontrivial AVTs are shown in the figures 1.3 through 1.5. 
Figure 1.3: AVT S(3, 5, 8) with ∆ = 3

$
Figure 1.4: AVT S(5, 9, 14) with ∆ = 3

�
Figure 1.5: AVT S(1, 1, 4, 6) with ∆ = 4

On the other hand the tree in Figure 1.1 is not AVT; e.g. it can not be decomposed
into two components of sizes 11 and 12. Before presenting some infinite classes of AVTs,
we introduce the following lemma.

Lemma 1.5 Let T be the comet S(a1, a2, a3) on n vertices with ∆ = 3. Let b1, b2, . . . , bk

be a partitioning of n. Then T can be partitioned into b1, b2, . . . , bk if either
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1. There exists i ∈ {1, 2, 3} and j ∈ {1, . . . , k} s.t. ai = bj, or
2. There exists j ∈ {1, . . . , k} such that bj > a1 + a2.

Proof.
(1) We will find a partition of T into b1, b2, . . . , bk. Let us take the arm of length ai to
be the partite set of size bj of VT . What is left of T is a path of length n − ai which is
an AVT so it can be partitioned into b1, . . . , bj−1, bj+1, . . . , bk. This partitioning together
with the set of size bj forms a partitioning of T into b1, b2, . . . , bk.
(2) We will find a partitioning of T into b1, b2, . . . , bk. Let us take the partite set of size bj to
contain the central vertex and both arms of lengths a1 and a2. What is left of T is a path of
length n−1−a1−a2 which is an AVT so it can be partitioned into b1, . . . , bj−1, bj+1, . . . , bk.
This partitioning together with the set of size bj forms a partitioning of T into b1, b2, . . . , bk.�
Theorem 1.6 Let T be the comet S(1, 1, a) on n = a + 3 vertices. T is an AVT iff n is
odd.

Proof.
(⇒) We can easily see that the contrapositive is true: if n is even, then it is obvious that
T can not be partitioned into parts of sizes 2, 2, . . . , 2.
(⇐) If n is odd then in the partitioning of n there has to be at least one part of odd size.
We denote this size b. If b = 1 the claim follows from Lemma 1.5 part 1. If b ≥ 3 the claim
follows from Lemma 1.5 part 2. �

More generally, we may identify which comets of the form S(1, a, b) are AVTs.

Theorem 1.7 Let T be the comet S(1, a, b) on n vertices with 1 ≤ a ≤ b. T is an AVT
iff gcd(a + 1, n) = 1.

Proof.
We denote the arms of T by I, A, and B, of sizes 1, a, and b, respectively, and we denote
by c the central vertex of T .
(⇒) Again the contrapostive is easy to prove by contradiction. Suppose that gcd(a +
1, n) = g > 1. Then write n = fg and consider the partition of n into f equal pieces
of size g. Suppose for a contradiction that there is a corresponding parition of T . Since
g|(a+1), it follows that c must belong to a partite set all of whose remaining vertices are
in A. On the other hand, since g > 1, the first arm of T must be contained in the same
partite set as the one containing c, a contradiction. So T is not an AVT.
(⇐) Suppose that T is not an AVT. Then there is a partition n = b1 + · · · + b` with
1 ≤ b1 ≤ · · · ≤ b` such that there is no corresponding partition of T . If bi = 1 for some i
or if bi = a for some i, then we could find a corresponding partition of T , by Lemma 1.5,
part 1. Also, if bi ≥ a + 2 for some i, then we could find a corresponding partition of T
by Lemma 1.5, part 2. So we have bi ∈ {2, 3, . . . , a − 1, a + 1} for all i. Further, we may
assume it is not the case that bi = a+1 for all i, since in that case we would have (a+1)|n,
so gcd(a + 1, n) > 1. So in particular, we can say b1 ≤ a. It makes sense now to ask for
the maximum integer j such that b1 + · · ·+ bj ≤ a. Let d = a + 1− (b1 + · · ·+ bj). Then
1 ≤ d ≤ a. By our choice of j, we have bm ≥ d for all m > j. But if bm > d for some m > j,
then by partitioning the b1 + · · ·+ bj vertices on the tail of A into pieces of size b1, . . . , bj

and discarding them, we can apply Lemma 1.5, part 2 to what’s left of T and conclude that
our partition is realizable, a contradiction. Therefore, bm = d for all m > j. Let s = `− j,
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so that n = b1 + · · · + bj + sd. We have sd = n − (b1 + · · · + bj) ≥ n − a = 2 + b > a.
So writing a = qd + r for integers q and r with 0 ≤ r < d, we see that qd ≤ a < sd,
so q < s; and we can write a − r = d + d + · · · + d, with q pieces of size d. We may
partition the qd tailmost vertices of A into q pieces of size d; since we have (q + 1)d > a,
adding another piece of size d to A would swallow all remaining vertices of A together
with c; if more, then again our partition would be realizable. Therefore, d = r + 1, and
a + 1 = (q + 1)d. Now if b1 < d, then instead of adding another piece of size d to A in
the previous argument, we could add a piece of size b1 followed by a piece of size d, and
again realize our partition on T . It follows that d = b1 = b2 = · · · = b`, and d|n. We have
shown that gcd(a + 1, n) ≥ d > 1. �

We note that in the previous result it is the partitions of n into equal pieces which
alone can cause T not to be an AVT. It would be of interest to classify all AVTs of the
form S(a, b, c) in a concise way. Compare [1] for related issues, including an investigation
of the time-complexity of determining whether S(a, b, c) is an AVT.

2. Known results

One result which is shown in the article [2] is about reduction of the problem from general
trees to comets.

Theorem 2.1 Let T be a tree with a vertex v of degree deg(v) ≥ 3 s.t. T \ v is a forest
in which at least two components are paths. We denote these paths P1 = u1u2 . . . , ur and
P2 = v1v2 . . . , vs. We denote by T ′

n the tree which is obtained from T by deleting the edge
vv1 and adding the edge urv1. If T is an AVT then T ′

n is also an AVT.

Proof. It is in [2]. �
Corollary 2.2 If T is an AVT, then there exists a comet C which is also an AVT, such
that |VT | = |VC |, and such that the maximum vertex degrees of T and C are equal. (That
is, any AVT can be “reduced” to an AVT comet.)

Proof. Is also in [2]. By repeating the construction form Theorem 2.1 we reduce degrees
of all nonleaf vertices (except one) to 2. �

Notice the Corollary 2.2 gives us a tool not only for simplifying AVTs from arbitrary
AVTs to comets, but its contrapositive is a tool for generating classes of trees which are
not AVT.

Corollary 2.3 Let T be a tree with an edge uv s.t. T \ uv is a forest in which at least
one component is a path. We denote this path P = a1a2 . . . , ar. We denote by T ′

n the tree
which is obtained from T by deleting the edge uv and adding the edge aax where x is any
nonleaf vertex in T \ P . If T is not an AVT then also T ′

n is not an AVT.

Proof. This is the contrapositive of Theorem 2.1. �
3. Classes of graph which are not AVT

To prove the Conjecture 1.4 we can focus on comets as shown in Corollary 2.2. It would
be enough to show that all comets with ∆ = 5 are not AVTs. The claim would follow
immediately from Corollary 2.3.
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In the following sections we will construct several classes of comets which are not AVT.
We can use them to construct other classes with larger ∆.

To show that a tree T is not AVT it is enough to find one partitioning P of n such
that T can’t be partitioned into P . The most promising candidates for such partitionings
are partitionings into equal or almost equal parts.

Lemma 3.1 Let T be the comet S(a1, a2, . . . , a∆) with ∆ ≥ 3. If n = k(ai +1) for some
i with 1 < i ≤ ∆, then T is not arbitrarily vertex-decomposable.

Proof. Consider the partitioning of n = (ai + 1) + (ai + 1) + · · · + (ai + 1) (k parts).
Suppose for a contradiction that T can be partitioned into k components of size (ai + 1).
The component containing the leaf vertex of the arm of length ai has to contain the
central vertex. The component containing the leaf vertex of the arm of length a1 has
also to contain the central vertex. Thus they are in the same component of size at least
a1 +ai +1 > ai +1. But this is a contradiction since all components must have size ai +1.�

Whenever we can partition n into equal size parts, we expect restrictions on how to
partition the corresponding tree. The following lemma is based on this idea.

Lemma 3.2 Let T be comet S(a1, a2, . . . , a∆) with ∆ ≥ 3. Suppose n = k · l where
1 < l ≤ k. If ai < l and

∑i
j=1 aj ≥ l for some i, 1 < i ≤ ∆, then T is not arbitrarily

vertex-decomposable.

Proof. Consider the partition n = l + l + · · ·+ l (k parts). We claim that T can not be
partitioned into k components of size l. We can prove it by contradiction using the same
argument as in the proof of Theorem 3.1. �
Theorem 3.3 Let T be the comet S(a1, a2, . . . , a∆) with ∆ ≥ 3. If a2 ≤ k(a1 − 1) and
n ≥ k(a2 + 1) for some positive integer k then T is not arbitrarily vertex-decomposable.

Proof. We can write n = q · (a2 + 1) + r with integers q and r such that r ≤ a2. We
know that q ≥ k since n ≥ k(a2 + 1). We divide r into q parts differing by at most one
and we denote them b and b + 1. (We can always do this by solving r = qb + s in integers
b and s with 0 ≤ s < q; then s is the number of pieces of size b + 1.)

Now consider the partition n = (a2 + 1 + b + 1) + · · ·+ (a2 + 1 + b + 1) + (a2 + 1 + b) +
· · ·+ (a2 + 1 + b). The corresponding partitioning of T cannot be realized. We show this
by contradiction. Suppose such a partitioning exists.

The part containing the leaf vertex in the first arm (of length a1) has to contain also
the central vertex. Similarly the part containing the leaf vertex in the second arm (of
length a2) has to contain also the central vertex. So they are in the same part, but this
is a contradiction since no part is big enough to contain both arms a1 and a2, as we will
now show.

There are two possibilities:

1. If r = qb then the biggest part is of size a1 + b + 1. We have

k(a1 − 1) ≥ a2 ≥ r = qb ≥ kb

k(a1 − 1) ≥ kb

a1 ≥ b + 1.

And both arms together with the central vertex are bigger than the biggest part:
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a1 + a2 + 1 ≥ a2 + b + 1 + 1.

a1 + a2 + 1 > a2 + b + 1.

2. If r > bk then the biggest part is of size a1 + b + 2. Now we have

k(a1 − 1) ≥ a2 ≥ r > qb ≥ kb

k(a1 − 1) > kb

a1 > b + 1.

And again both arms together with the central vertex are bigger than the biggest part:
a1 + a2 + 1 > a2 + b + 2. �

The previous result can be generalized using Corollary 2.3.

Theorem 3.4 Let T be the comet S(a1, a2, . . . , a∆) with ∆ ≥ 3. If there is a positive
integer k and an integer i with 1 < i < ∆ such that ai ≤ k(

∑i−1
j=1 aj−1) and n ≥ k(ai+1),

then T is not arbitrarily vertex-decomposable.

Proof. By contradiction. Suppose T satisfying the given conditions is AVT. Then apply-
ing Theorem 2.1 we can reattach the shortest arms a1, . . . , ai−2 to the arm ai−1 obtaining
an AVT T ′

n in which the two shortest arms are of lengths a′1 =
∑i−1

j=1 aj and a′2 = ai. Since

ai ≤ k(
∑i−1

j=1 aj−1), we have a′2 ≤ k(a′1−1). But this is a contradiction with Theorem 3.3
which says that such a graph is not AVT. Thus the assumption was wrong and T is not
AVT. �
Corollary 3.5 If T is an AVT, then we have aj > b n

aj+1
c(a1 + a2 + · · ·+ aj−1 − 1) for

all j with 2 ≤ j ≤ ∆.

Proof. Pick k = b n
aj+1

c. Then n ≥ k(aj + 1), and since T is an AVT, we must have

aj > k(
∑i−1

j=1 aj − 1). �
Corollary 3.6 aj >

√
n + 1− 1 if 3 ≤ j ≤ ∆.

Proof. Suppose 3 ≤ j ≤ ∆. By Corollary 3.5, we have aj > b n
aj+1

c(a1 +a2 + · · ·+aj−1−
1) ≥ b n

aj+1
c ≥ n−aj

aj+1
, and the result follows. �

Corollary 3.7 a∆ > n/2− 1.

Proof. We have a∆ > b n
a∆+1

c(a1 + a2 + · · · + a∆−1 − 1) ≥ a1 + a2 + · · · + a∆−1 − 1. So
2a∆ > a1 + a2 + · · ·+ a∆−1 + a∆ − 1 = n− 2, and the result follows. �

So far, we have only shown that the arm lengths are large and grow quickly (after the
first two, anyway). Next, we will try to show that for some number α, the decomposition
n = α+α+· · ·+α+r, where 0 ≤ r < α, does not correspond to any possible decomposition
of T if T has too many arms.
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4. Main result

Theorem 4.1 If T = S(a1, a2, . . . , a∆) is an AVT, then ∆ ≤ 5.

Proof. Suppose for a contradiction that T is an AVT and ∆ ≥ 6. Set a = a3 and b = a4.
If a5 < 3a4 then set c = a6; otherwise, set c = a5. We claim that c ≥ 3b and b ≥ 3a. To see
this, first note that a6 > a5 > a4 by Corollary 3.5. So if a4 > n/3− 1, then we would have
n = 1+a1+a2+· · ·+a∆ ≥ 1+a1+a2+a3+a4+a5+a6 > 3+3(n/3−1) = n, a contradiction.
Thus a4 ≤ n/3−1, so by Corollary 3.5, we have a4 > b n

a4+1
c(a1 +a2 +a3−1) ≥ 3(a3 +1).

So b ≥ 3a. If a5 ≥ 3a4, then c = a5 ≥ 3a4 = 3b. Otherwise, we have a5 < n−1−a1−a∆ <
n − 2 − (n/2 − 1) by Corollary 3.7, so a5 < n/2 − 1, so a5 > 2a4 by Corollary 3.5; by
Corollary 3.5 again, we have a6 > a1 + a2 + a3 + a4 + a5 − 1 > 3a4, so in this case also,
c ≥ 3b.

Next, set ` = 1, j = d b`
a
− b−a

2a
e, and k = d cj

b
− c−b

2b
e. We claim that we have an inclusion

of closed intervals [ b
j
, b

j−1/2
] ⊆ [a

`
, a

`−1/2
]. Indeed, this inclusion merely requires that a

`
≤ b

j

and b
j−1/2

≤ a
`−1/2

, which is equivalent to j ∈ [ b`
a
− b−a

2a
, b`

a
]. The length of this last interval

is b−a
2a
≥ 3a−a

2a
= 1, so there must be an integer inside of it; so our choice of j must in fact

be inside of it. Similarly, we find that [ c
k
, c

k−1/2
] ⊆ [ b

j
, b

j−1/2
].

Our next task is to show that there is an integer α in the half-open interval ( c
k
, c

k−1/2
].

For this it is sufficient that c
k−1/2

− c
k
≥ 1, which is equivalent to c ≥ k(2k− 1). So it will

be sufficient for our purpose if k ≤ √
c
2
. We establish this by dividing the claim into two

cases.
Case 1. c = a5.
In this case, we have c = a5 < n−a1−a2−a3−a∆ ≤ n−2−a3−a∆ < n−2−(

√
n−1)−

(n/2−1) (using Corollaries 3.6 and 3.7). So c < n/2−√n, and 2c < n−2
√

n < (
√

n−1)2 <
a2 (using Corollary 3.6). But since c

k
∈ [ c

k
, c

k−1/2
] ⊆ [ b

j
, b

j−1/2
] ⊆ [a

`
, a

`−1/2
] = [a, 2a], we have

c
k
≥ a, so k ≤ c

a
< c√

2c
=

√
c
2
.

Case 2. c = a6.
To arrive in this case, we must have had a5 < 3a4. If we had a5 ≤ n/3 − 1, then

Corollary 3.5 would imply a5 > 3(a1 + a2 + a3 + a4− 1) > 3a4, a contradiction. Therefore,
a5 > n/3 − 1; if ∆ ≥ 7, then this is impossible, since it would imply a5 + a6 + a7 > n.
So we can conclude that ∆ = 6. Next we need to establish that a4 ≤ n/4− 1. Indeed, if
a4 > n/4−1, then we would have a5 < n−1−a1−a∆ ≤ n−2−a∆ < n−2− (n/2−1) =
n/2−1, so by Corollary 3.5, we would get a5 > 2(a1 +a2 +a3 +a4−1) ≥ 2(a3 +a4 +1) >
2(
√

n+a4) > 2(
√

n+n/4− 1) = n/2+2
√

n−1, so 1+a5 +a∆ > n, a contradiction. Now
by Corollary 3.5, we find a4 > 4(a3 + 1), a5 > 2(a1 + a2 + a3 + a4 − 1) > 2(a3 + a4 + 1) >
2(a3+4(a3+1)+1) = 10(a3+1), and a6 > a1+a2+a3+a4+a5−1 > 15(a3+1). Therefore,
n ≥ 1+a1 +a2 +a3 +a4 +a5 +a6 > 30(a3 +1)+a1 +a2 ≥ 30a3 +32. Since a3 >

√
n−1 by

Corollary 3.6, we have n > 30(
√

n−1)+32 = 30
√

n+2. So n−30
√

n > 2, (
√

n−15)2 > 227,√
n > 15 +

√
227, and n > 900. Now we have c = a6 = a∆ > n/2− 1 > 449, so c ≥ 450.

Recalling from above that a5 > n/3− 1 and a4 > a5/3 > n/9− 1/3, we find c = a6 =
n−1−a1−a2−a3−a4−a5 < n−3− (

√
n−1)− (n

3
−1)− (n

9
− 1

3
) = n− n

3
− n

9
−√n− 2

3
<

5n
9
− √

n = 5
9
(n − 9

5

√
n) = 5

9
((
√

n − 9
10

)2 − 81
100

) < 5
9
(
√

n − 9
10

)2. So 9
5
c < (

√
n − 9

10
)2,

√
n− 9

10
>

√
9c
5
, and a >

√
n− 1 >

√
9c
5
− 1

10
.

Next, note that j = d b+a
2a
e < b+a

2a
+ 1 = b

2a
+ 3

2
and k = d cj

b
− c−b

2b
e < cj

b
− c−b

2b
+ 1 <

c
b
( b

2a
+ 3

2
)− c−b

2b
+ 1 = c

2a
+ 3c

2b
− c

2b
+ 3

2
= c

2a
+ c

b
+ 3

2
.
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Since b ≥ 3a, we have

k <
c

2a
+

c

3a
+

3

2

=
5c

6a
+

3

2

<
5c

6
(√

9c
5
− 1

10

) +
3

2

=

√
c

1.2
(√

9
5
− 1

10
√

c

) +
3

2

<

√
c

1.2
(√

9
5
− 1

200

) +
3

2
,

where the last inequality holds since we know c ≥ 450. Set ω = 1.2
(√

9
5
− 1

200

)
. Now

√
c

ω
+ 3

2
≤ √

c
2

if and only if
√

c( 1√
2
− 1

ω
) ≥ 3

2
, which is true for c ≥ 450. This finishes Case

2.

,
︷ ︸︸ ︷α︷ ︸︸ ︷α︷ ︸︸ ︷α︷ ︸︸ ︷α︷ ︸︸ ︷α︷ ︸︸ ︷ra∆

︷ ︸︸ ︷α︷ ︸︸ ︷α︷ ︸︸ ︷α︷ ︸︸ ︷α︷ ︸︸ ︷ra∆−1

︸ ︷︷ ︸
α

︸ ︷︷ ︸
α

︸ ︷︷ ︸
α

︸ ︷︷ ︸
ra∆−2

︸ ︷︷ ︸
α

︸ ︷︷ ︸
α

︸ ︷︷ ︸
ra1

Figure 4.1: Partitioning of T into parts of size n = α + α + · · ·+ α + r (M = R case)

To summarize, we now have positive integers α, j, k, ` such that α ∈ ( c
k
, c

k−1/2
] ⊆

[ b
j
, b

j−1/2
] ⊆ [a

`
, a

`−1/2
]. Consider the partition n = α + α + · · · + α + r, where 0 ≤ r < α

(see Figure 4.1). Since T is an AVT, there is a corresponding partition P of VT . Let A, B,
and C denote the vertex sets of the arms of length a, b, and c, respectively. Let M denote
the subset of T in our partition P that contains the central vertex of T , and let R denote
the unique subset in P of size r. (Note that R may be empty.) First we consider the case
that M = R. By our choice of partition, the set difference A − M is then partitioned
under P into subsets of size α, so α divides |A −M |; say |A −M | = mα with m ∈ Z.
Let ra = |A ∩ M | = a − |A − M |. Then 0 ≤ ra ≤ r < α, and a = mα + ra, so ra is
the remainder of a modulo α. Since we know that α ∈ (a

`
, a

`−1/2
], where ` is an integer,

it follows that ra ≥ α
2
. Since the same conclusion can be drawn about the remainders rb

and rc, it follows that r = |R| ≥ 1 + ra + rb + rc ≥ 3α
2

, contradicting that r < α.
In case M 6= R, at most one arm of T intersects R (exactly one, if R is non-empty).

We apply the same argument as above to two of the three arms A, B, C which do not
intersect R, and we find α = |M | ≥ 1 + α

2
+ α

2
, a contradiction. �
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