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Abstract

Sylvester proved that if α1 and α2 are relatively prime positive
integers then the set of all nonnegative integer linear combinations of
α1 and α2 includes all integers greater than F = α1α2−(α1+α2). Thus
K = F +1 called conductor is the smallest integer such that for every
integer k with K ≤ k the equation α1x1 + α2x2 = k has a solution
over nonnegative integers. The vector version of Sylvester’s result,
provided an analogue of F , was obtained by Knight [3] and recently
again by Simpson and Tijdeman [5]. The purpose of this note is to
show that the concept of the conductor K could be generalized as well
as F .
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1 Introduction

A well known result due to Sylvester [7] is that

F = α1α2 − (α1 + α2) (1.1)

is the largest integer not expressible as a nonnegative integer linear combi-
nation (shortly: integer conic combination) of α1, α2 if α1, α2 are positive
relatively prime integers.

The integer
K = F + 1, (1.2)

called conductor, is thus the smallest integer such that for every integer k
with K ≤ k the equation α1x1 + α2x2 = k has a solution over nonnegative
integers.

It has been known for a long time that if α1, ..., αn (n ≥ 3) are positive
relatively prime integers then there exists a greatest integer F (called Frobe-
nius number) which cannot be written as an integer conic combination of
them. Clearly, if k is an integer greater than F , then the equation

α1x1 + ..., +αnxn = k

has a solution over the nonnegative integers.

For the case of n = 2 we have (1.1), while no such solution is known for
n = 3.

However, this result does generalize to vectors. This was made by Knight
[3] and again by Simpson and Tijdeman [5]. We state their result in a new
form as a Theorem 1.1.

Throughout this paper we resort to the following notation, definitions and
claims. Additionally, we refer to [4] for the terminology and the standard
notation.

• {a1, ..., an+1} denotes the set of n + 1 integral column vectors in ZZn.

• A is an n× (n + 1) integral matrix of rank n with columns a1, ..., an+1

and

• L(A) = {∑i=n+1
i=1 aixi: xi ∈ ZZ} ⊆ ZZn denotes the n-dimensional lattice

generated by the columns of A.
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• The set mon(A) = {Ax: x ∈ ZZn+1
+ } is an integral monoid in ZZn

generated by the columns of A (or by A).

• Analogously, cone(A) = {Ax: x ∈ IRn+1
+ } is a convex cone in IRn

generated by A.

• Suppose an+1 ∈ int(cone(a1, ..., an)) and

• d = det(a1, ..., an) > 0.

• Denote di = det(a1, ..., ai−1, an+1, ai+1, ..., an) for i = 1, ..., n.

An element s ∈ mon(A) is called a swelling-point if each integral vector
in the set {s + cone(A)} can be expressed as an integer conic combination of
a1, ..., an+1, i.e.,

(s + cone(A)) ∩ Zn ⊆ mon(A),

where {s + cone(A)} denotes the set of elements s + x with x ∈ cone(A).

• S denotes the set of all swelling-points in mon(A).

Theorem 1.1 [3], [5] Let the set of columns of A generates the standard
lattice ZZn. There exists a unique vector F ∈ ZZn,

F = d · an+1 − (a1 + · · ·+ an + an+1) (1.3)

not expressible as an integer conic combination of a1, ..., an+1 such that

int(F + cone(A)) ∩ ZZn = S. (1.4)

In other words, the equation (1.4) means that for each integral vector b
with

b ∈ int(F + cone(A)) (1.5)

the system Ax = b has a nonnegative integral solution x.

The importance of Theorem 1.1 is that the vector F given by (1.3) may
be considered as an analogue of Frobenius number. Hence, we call F the
Frobenius vector.
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Example 1.2 Let

A =

(
3 1 2
2 3 2

)
.

-
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Figure 1: The elements of mon(A) are denoted by circles. The Frobenius
vector F (see - the asterisk) is equal to (8, 7)T .

2 Main results

Before specializing further we give some general lemmas, some of which are
almost immediate.

Lemma 2.1 If G ⊆ INn
o , G 6= ∅, INo = IN ∪ {0}, there exists a finite subset

{g1, ..., gt} ⊆ G for which

g ∈ G implies gj ≤ g for at least one j = 1, ..., t. (2.1)
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Proof. Define

M = {g ∈ G: no element g′ ∈ G with g′ 6= g satisfies g′ ≤ g}. (2.2)

Since elements of M are incomparable, M is finite and M = {g1, ..., gt}.
By definition (2.2) of M , (2.1) holds, since an infinite descending chain

v1 |≥ v2 |≥ v3 |≥ · · · (2.3)

of elements vj ∈ G is impossible, as G ⊆ INn
o .

Let GCD(d, d1, ..., dn) be the greatest common divisor of d, d1, ..., dn. The
following lemma is immediate.

Lemma 2.2
GCD(d, d1, ..., dn) = 1 (2.4)

if and only if the set of columns of A generates the standard lattice ZZn.

Proof. (2.4) is equivalent to the fact that the Smith Normal Form [1], [2] of
the matrix A is of the form

SNF(A) = (In×n, 0)

where In×n is an identity n × n matrix and 0 is the column vector of zeros.
Clearly, two equivalent matrices A and SNF(A) generate the same lattice,
i.e., the standard lattice ZZn.

Lemma 2.3 If GCD(d, d1, ..., dn) = 1 and d, d1, ..., dn > 1 then F ∈ cone(A).

Proof. Suppose d = 1. This means that the set {a1, ..., an} forms a Hibert
basis for the cone generated by the vectors a1, ..., an.

(A finite set of integral vectors {a1, ..., am} is called a Hilbert basis (cf.
[4]) if each integral vector in cone(a1, ..., am) is an integer conic combination
of a1, ..., am.)

Hence, as mon(A) = mon(a1, ..., an) = cone(A) ∩ ZZn, F /∈ cone(A). On
the other hand, for d = 1 by (1.3) clearly F /∈ cone(A).
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Now let di = 1 for some i ∈ {1, ..., n}, i.e., the set of vectors
{a1, ..., ai−1, an+1, ai+1, ..., an} forms a Hilbert basis for the cone generated by
the vectors a1, ..., ai−1, an+1, ai+1, ..., an. Suppose F ∈ cone(A). Then there
exists a face f(F ) of {F +cone(A)} and a swelling-point s which is an element
of the set

f(F ) ∩mon(a1, ..., ai−1, an+1, ai+1, ..., an)

contradicting the fact of Theorem 1.1 that all swelling-points belong to
int(F + cone(A)).

We further claim that

• A is a n× (n+1) nonnegative integral matrix of rank n, hence cone(A)
is pointed, i.e., the origin is a vertex of it and

• GCD(d, d1, ..., dn) = 1 and d, d1, ..., dn > 1.

Corollary 2.4 Let G = S. There exists a finite subset
k(F ) = {k1, ..., kr} ⊂ S for which

s ∈ S implies kj ≤ s for at least one j = 1, ..., r.

Proof. By Lemma 2.1 this is straightforward.

Let the set H = {h1, ..., hl} be the minimal Hilbert basis for the cone(A).
As cone(A) is a pointed cone, such minimal (w.r.t. inclusions) Hilbert basis
is uniquely determined [4] and can be computed by program 4ti2 developed
by R.Hemmecke [6].

We say that the set {a1, ..., an} of columns of A generates a Hilbert basis
{h1, ..., hn} for cone(A) if there are positive integers α1, ..., αn such that
αihi = ai for i = 1, ..., n.

Let

D = {
n∑

i=1

λiai: 0 ≤ λi ≤ 1, i = 1, ..., n} (2.5)

and denote by
Hint = H ∩ (int(D) ∩ ZZn) (2.6)

the set of vectors of H which lie in the interior of D.
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Next, if all vectors of H = {h1, ..., hl} lie on the faces of cone(A), consider
the finite set of vectors

v(H) = {vJ : vJ =
∑
i∈J

hi, J ⊂ {1, ..., l}}

in int(D). Let c(H) be the set of conically independent elements of v(H).

(A finite set of vectors {v1, ..., vk} is called conically independent with
respect to A if vp − vq =

∑n
i=1 miai with mi ∈ IR+ implies mi = 0 for

i = 1, ..., n and p 6= q.)
Define

11(H) =


∑n

i=1 hi if a1, ..., an generate Hilbert basis
c(H) if H ∩ int(cone(A)) = ∅
Hint, otherwise

. (2.7)

Theorem 2.5
(K(F ) + cone(A)) ∩ ZZn = S, (2.8)

where
K(F ) = F + 11(H). (2.9)

Proof. Here the inclusion ⊆ is trivial.
To prove the reverse inclusion, suppose s ∈ S. By Theorem 1.1, s ∈

int(F + cone(A)) ∩ ZZn. Then there are µ1, ..., µn ≥ 0 such that

s = F +
n∑

i=1

µiai = F +
n∑

i=1

bµicai +
n∑

i=1

(µi − bµic)ai,

where for any real number t, btc denotes the greatest integer no greater
than t. Because s, F and

∑n
i=1bµicai are integer vectors,

n∑
i=1

(µi − bµic)ai (2.10)

is an integer element of the set D given by (2.5).
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We may assume s ∈ (int(F + D)) ∩ ZZn with D defined by (2.5). Hence

s− F =
n∑

i=1

λiai, 0 < λi < 1 for i = 1, ..., n (2.11)

is an integral vector in the interior of D. Consider three cases.
(a) If for each i = 1, ..., n (λiai) is an integral vector with λiai = xihi

for some xi ∈ ZZ+ and hi is an integral vector such that its components are
relatively prime integers then by [4] it is immediate that the set {h1, ..., hn}
forms a minimal Hilbert basis for cone(A).

Thus, s − F =
∑n

i=1 hi +
∑n

i=1 αihi, αi ∈ ZZ+. So s is an element of the
set (K(F ) + cone(A)) ∩ ZZn, with K(F ) = F +

∑n
i=1 hi.

(b) Given
H = {h1, ..., hl} (2.12)

a Hilbert basis for cone(A). Assume a1, ..., an do not generate a Hilbert basis
and H ∩ int(D) = ∅. As w defined by (2.10) for (s − F ) given by (2.11) is
an integer vector in int(D) then

w =
l∑

i=1

αihi, αi ∈ ZZ+ for i = 1, ..., l. (2.13)

Now the vector (
∑

i∈J hi) ∈ c(H) occurs in the right side of (2.13).
(c) Let a1, ..., an do not generate a Hilbert basis for cone(A) and let H

given by (2.12) satisfy H ∩ int(D) 6= ∅. As w which is equal to (2.10) for
(s− F ) given by (2.11) is an integer vector in int(D) then either w belongs
to Hint or

w =
l∑

i=1

βihi, βi ∈ ZZ+ for i = 1, ..., l. (2.14)

Now the vector
(
∑

hi, hi ∈ Hint)

and hence hi ∈ Hint occurs in the right side of (2.14).
This implies inclusion ⊇.

It is easy to see that the formula (2.9) is an analogue to the formula (1.2),
i.e., to K = F + 1.

Moreover, observe that Corollary 2.4 is satisfied if we replace k(F ) by
K(F ) given by (2.9).

8



Example 2.6 Let A be as in Example 1.2.
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Figure 2: The conductor K(F ) consists of black circles (9, 8)T and (9, 9)T .
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