Conductor in a Sylvester's formula on lattices

Anna Rycerz
A G H University of Science and Technology
Faculty of Applied Mathematics
al. Mickiewicza 30, $30-059$ Cracow, Poland
rycerz@uci.agh.edu.pl

April 6, 2006

Abstract

Sylvester proved that if α_{1} and α_{2} are relatively prime positive integers then the set of all nonnegative integer linear combinations of α_{1} and α_{2} includes all integers greater than $F=\alpha_{1} \alpha_{2}-\left(\alpha_{1}+\alpha_{2}\right)$. Thus $K=F+1$ called conductor is the smallest integer such that for every integer k with $K \leq k$ the equation $\alpha_{1} x_{1}+\alpha_{2} x_{2}=k$ has a solution over nonnegative integers. The vector version of Sylvester's result, provided an analogue of F, was obtained by Knight [3] and recently again by Simpson and Tijdeman [5]. The purpose of this note is to show that the concept of the conductor K could be generalized as well as F.

Keywords:

Sylvester's formula, Frobenius number, integral monoid, Hilbert basis
MSC: (2000) 90C27, 52C07, 11D04

1 Introduction

A well known result due to Sylvester [7] is that

$$
\begin{equation*}
F=\alpha_{1} \alpha_{2}-\left(\alpha_{1}+\alpha_{2}\right) \tag{1.1}
\end{equation*}
$$

is the largest integer not expressible as a nonnegative integer linear combination (shortly: integer conic combination) of α_{1}, α_{2} if α_{1}, α_{2} are positive relatively prime integers.

The integer

$$
\begin{equation*}
K=F+1, \tag{1.2}
\end{equation*}
$$

called conductor, is thus the smallest integer such that for every integer k with $K \leq k$ the equation $\alpha_{1} x_{1}+\alpha_{2} x_{2}=k$ has a solution over nonnegative integers.

It has been known for a long time that if $\alpha_{1}, \ldots, \alpha_{n}(n \geq 3)$ are positive relatively prime integers then there exists a greatest integer F (called Frobenius number) which cannot be written as an integer conic combination of them. Clearly, if k is an integer greater than F, then the equation

$$
\alpha_{1} x_{1}+\ldots,+\alpha_{n} x_{n}=k
$$

has a solution over the nonnegative integers.
For the case of $n=2$ we have (1.1), while no such solution is known for $n=3$.

However, this result does generalize to vectors. This was made by Knight [3] and again by Simpson and Tijdeman [5]. We state their result in a new form as a Theorem 1.1.

Throughout this paper we resort to the following notation, definitions and claims. Additionally, we refer to [4] for the terminology and the standard notation.

- $\left\{a_{1}, \ldots, a_{n+1}\right\}$ denotes the set of $n+1$ integral column vectors in \mathbb{Z}^{n}.
- A is an $n \times(n+1)$ integral matrix of rank n with columns a_{1}, \ldots, a_{n+1} and
- $L(A)=\left\{\sum_{i=1}^{i=n+1} a_{i} x_{i}: x_{i} \in \mathbb{Z}\right\} \subseteq \mathbb{Z}^{n}$ denotes the n-dimensional lattice generated by the columns of A.
- The set $\operatorname{mon}(A)=\left\{A x: x \in \mathbb{Z}_{+}^{n+1}\right\}$ is an integral monoid in \mathbb{Z}^{n} generated by the columns of A (or by A).
- Analogously, cone $(A)=\left\{A x: x \in \mathbb{R}_{+}^{n+1}\right\}$ is a convex cone in \mathbb{R}^{n} generated by A.
- Suppose $a_{n+1} \in \operatorname{int}\left(\operatorname{cone}\left(a_{1}, \ldots, a_{n}\right)\right)$ and
- $d=\operatorname{det}\left(a_{1}, \ldots, a_{n}\right)>0$.
- Denote $d_{i}=\operatorname{det}\left(a_{1}, \ldots, a_{i-1}, a_{n+1}, a_{i+1}, \ldots, a_{n}\right)$ for $i=1, \ldots, n$.

An element $s \in \operatorname{mon}(A)$ is called a swelling-point if each integral vector in the set $\{s+\operatorname{cone}(A)\}$ can be expressed as an integer conic combination of a_{1}, \ldots, a_{n+1}, i.e.,

$$
(s+\operatorname{cone}(A)) \cap Z^{n} \subseteq \operatorname{mon}(A),
$$

where $\{s+\operatorname{cone}(A)\}$ denotes the set of elements $s+x$ with $x \in \operatorname{cone}(A)$.

- S denotes the set of all swelling-points in $\operatorname{mon}(A)$.

Theorem 1.1 [3], [5] Let the set of columns of A generates the standard lattice \mathbb{Z}^{n}. There exists a unique vector $F \in \mathbb{Z}^{n}$,

$$
\begin{equation*}
F=d \cdot a_{n+1}-\left(a_{1}+\cdots+a_{n}+a_{n+1}\right) \tag{1.3}
\end{equation*}
$$

not expressible as an integer conic combination of a_{1}, \ldots, a_{n+1} such that

$$
\begin{equation*}
\operatorname{int}(F+\operatorname{cone}(A)) \cap \mathbb{Z}^{n}=S \tag{1.4}
\end{equation*}
$$

In other words, the equation (1.4) means that for each integral vector b with

$$
\begin{equation*}
b \in \operatorname{int}(F+\operatorname{cone}(A)) \tag{1.5}
\end{equation*}
$$

the system $A x=b$ has a nonnegative integral solution x.
The importance of Theorem 1.1 is that the vector F given by (1.3) may be considered as an analogue of Frobenius number. Hence, we call F the Frobenius vector.

Example 1.2 Let

$$
A=\left(\begin{array}{lll}
3 & 1 & 2 \\
2 & 3 & 2
\end{array}\right)
$$

Figure 1: The elements of $\operatorname{mon}(A)$ are denoted by circles. The Frobenius vector F (see - the asterisk) is equal to $(8,7)^{T}$.

2 Main results

Before specializing further we give some general lemmas, some of which are almost immediate.

Lemma 2.1 If $G \subseteq \mathbb{N}_{o}^{n}, G \neq \emptyset, N_{o}=I N \cup\{0\}$, there exists a finite subset $\left\{g_{1}, \ldots, g_{t}\right\} \subseteq G$ for which

$$
\begin{equation*}
g \in G \text { implies } g_{j} \leq g \text { for at least one } j=1, \ldots, t \tag{2.1}
\end{equation*}
$$

Proof. Define

$$
\begin{equation*}
M=\left\{g \in G: \text { no element } g^{\prime} \in G \text { with } g^{\prime} \neq g \text { satisfies } g^{\prime} \leq g\right\} \tag{2.2}
\end{equation*}
$$

Since elements of M are incomparable, M is finite and $M=\left\{g_{1}, \ldots, g_{t}\right\}$. By definition (2.2) of M, (2.1) holds, since an infinite descending chain

$$
\begin{equation*}
v_{1} \geq v_{2} \geq v_{3} \geq \cdots \tag{2.3}
\end{equation*}
$$

of elements $v_{j} \in G$ is impossible, as $G \subseteq I N_{o}^{n}$.

Let $\operatorname{GCD}\left(d, d_{1}, \ldots, d_{n}\right)$ be the greatest common divisor of d, d_{1}, \ldots, d_{n}. The following lemma is immediate.

Lemma 2.2

$$
\begin{equation*}
\operatorname{GCD}\left(d, d_{1}, \ldots, d_{n}\right)=1 \tag{2.4}
\end{equation*}
$$

if and only if the set of columns of A generates the standard lattice \mathbb{Z}^{n}.
Proof. (2.4) is equivalent to the fact that the Smith Normal Form [1], [2] of the matrix A is of the form

$$
\operatorname{SNF}(A)=\left(I_{n \times n}, 0\right)
$$

where $I_{n \times n}$ is an identity $n \times n$ matrix and 0 is the column vector of zeros. Clearly, two equivalent matrices A and $\operatorname{SNF}(A)$ generate the same lattice, i.e., the standard lattice \mathbb{Z}^{n}.

Lemma 2.3 If $\operatorname{GCD}\left(d, d_{1}, \ldots, d_{n}\right)=1$ and $d, d_{1}, \ldots, d_{n}>1$ then $F \in \operatorname{cone}(A)$.
Proof. Suppose $d=1$. This means that the set $\left\{a_{1}, \ldots, a_{n}\right\}$ forms a Hibert basis for the cone generated by the vectors a_{1}, \ldots, a_{n}.
(A finite set of integral vectors $\left\{a_{1}, \ldots, a_{m}\right\}$ is called a Hilbert basis (cf. [4]) if each integral vector in cone $\left(a_{1}, \ldots, a_{m}\right)$ is an integer conic combination of a_{1}, \ldots, a_{m}.)

Hence, as $\operatorname{mon}(A)=\operatorname{mon}\left(a_{1}, \ldots, a_{n}\right)=\operatorname{cone}(A) \cap \mathbb{Z}^{n}, F \notin \operatorname{cone}(A)$. On the other hand, for $d=1$ by (1.3) clearly $F \notin \operatorname{cone}(A)$.

Now let $d_{i}=1$ for some $i \in\{1, \ldots, n\}$, i.e., the set of vectors $\left\{a_{1}, \ldots, a_{i-1}, a_{n+1}, a_{i+1}, \ldots, a_{n}\right\}$ forms a Hilbert basis for the cone generated by the vectors $a_{1}, \ldots, a_{i-1}, a_{n+1}, a_{i+1}, \ldots, a_{n}$. Suppose $F \in \operatorname{cone}(A)$. Then there exists a face $f(F)$ of $\{F+\operatorname{cone}(A)\}$ and a swelling-point s which is an element of the set

$$
f(F) \cap \operatorname{mon}\left(a_{1}, \ldots, a_{i-1}, a_{n+1}, a_{i+1}, \ldots, a_{n}\right)
$$

contradicting the fact of Theorem 1.1 that all swelling-points belong to $\operatorname{int}(F+\operatorname{cone}(A))$.

We further claim that

- A is a $n \times(n+1)$ nonnegative integral matrix of rank n, hence cone (A) is pointed, i.e., the origin is a vertex of it and
- $\operatorname{GCD}\left(d, d_{1}, \ldots, d_{n}\right)=1$ and $d, d_{1}, \ldots, d_{n}>1$.

Corollary 2.4 Let $G=S$. There exists a finite subset $k(F)=\left\{k_{1}, \ldots, k_{r}\right\} \subset S$ for which

$$
s \in S \text { implies } k_{j} \leq s \text { for at least one } j=1, \ldots, r \text {. }
$$

Proof. By Lemma 2.1 this is straightforward.
Let the set $H=\left\{h_{1}, \ldots, h_{l}\right\}$ be the minimal Hilbert basis for the cone (A). As cone (A) is a pointed cone, such minimal (w.r.t. inclusions) Hilbert basis is uniquely determined [4] and can be computed by program $4 t i 2$ developed by R.Hemmecke [6].

We say that the set $\left\{a_{1}, \ldots, a_{n}\right\}$ of columns of A generates a Hilbert basis $\left\{h_{1}, \ldots, h_{n}\right\}$ for cone (A) if there are positive integers $\alpha_{1}, \ldots, \alpha_{n}$ such that $\alpha_{i} h_{i}=a_{i}$ for $i=1, \ldots, n$.

Let

$$
\begin{equation*}
D=\left\{\sum_{i=1}^{n} \lambda_{i} a_{i}: 0 \leq \lambda_{i} \leq 1, i=1, \ldots, n\right\} \tag{2.5}
\end{equation*}
$$

and denote by

$$
\begin{equation*}
H_{\text {int }}=H \cap\left(\operatorname{int}(D) \cap \mathbb{Z}^{n}\right) \tag{2.6}
\end{equation*}
$$

the set of vectors of H which lie in the interior of D.

Next, if all vectors of $H=\left\{h_{1}, \ldots, h_{l}\right\}$ lie on the faces of cone (A), consider the finite set of vectors

$$
v(H)=\left\{v_{J}: v_{J}=\sum_{i \in J} h_{i}, \quad J \subset\{1, \ldots, l\}\right\}
$$

in $\operatorname{int}(D)$. Let $c(H)$ be the set of conically independent elements of $v(H)$.
(A finite set of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is called conically independent with respect to A if $v_{p}-v_{q}=\sum_{i=1}^{n} m_{i} a_{i}$ with $m_{i} \in R_{+}$implies $m_{i}=0$ for $i=1, \ldots, n$ and $p \neq q$.)

Define

$$
\mathbb{1}(H)=\left\{\begin{array}{lll}
\sum_{i=1}^{n} h_{i} & \text { if } & a_{1}, \ldots, a_{n} \text { generate Hilbert basis } \tag{2.7}\\
c(H) & \text { if } H \cap \operatorname{int}(\operatorname{cone}(A))=\emptyset \\
H_{\text {int }}, & & \text { otherwise }
\end{array} .\right.
$$

Theorem 2.5

$$
\begin{equation*}
(K(F)+\operatorname{cone}(A)) \cap \mathbb{Z}^{n}=S, \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
K(F)=F+\mathbb{1}(H) . \tag{2.9}
\end{equation*}
$$

Proof. Here the inclusion \subseteq is trivial.
To prove the reverse inclusion, suppose $s \in S$. By Theorem 1.1, $s \in$ $\operatorname{int}(F+\operatorname{cone}(A)) \cap \mathbb{Z}^{n}$. Then there are $\mu_{1}, \ldots, \mu_{n} \geq 0$ such that

$$
s=F+\sum_{i=1}^{n} \mu_{i} a_{i}=F+\sum_{i=1}^{n}\left\lfloor\mu_{i}\right\rfloor a_{i}+\sum_{i=1}^{n}\left(\mu_{i}-\left\lfloor\mu_{i}\right\rfloor\right) a_{i},
$$

where for any real number $t,\lfloor t\rfloor$ denotes the greatest integer no greater than t. Because s, F and $\sum_{i=1}^{n}\left\lfloor\mu_{i}\right\rfloor a_{i}$ are integer vectors,

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\mu_{i}-\left\lfloor\mu_{i}\right\rfloor\right) a_{i} \tag{2.10}
\end{equation*}
$$

is an integer element of the set D given by (2.5).

We may assume $s \in(\operatorname{int}(F+D)) \cap \mathbb{Z}^{n}$ with D defined by (2.5). Hence

$$
\begin{equation*}
s-F=\sum_{i=1}^{n} \lambda_{i} a_{i}, \quad 0<\lambda_{i}<1 \quad \text { for } i=1, \ldots, n \tag{2.11}
\end{equation*}
$$

is an integral vector in the interior of D. Consider three cases.
(a) If for each $i=1, \ldots, n\left(\lambda_{i} a_{i}\right)$ is an integral vector with $\lambda_{i} a_{i}=x_{i} h_{i}$ for some $x_{i} \in \mathbb{Z}_{+}$and h_{i} is an integral vector such that its components are relatively prime integers then by [4] it is immediate that the set $\left\{h_{1}, \ldots, h_{n}\right\}$ forms a minimal Hilbert basis for cone (A).

Thus, $s-F=\sum_{i=1}^{n} h_{i}+\sum_{i=1}^{n} \alpha_{i} h_{i}, \alpha_{i} \in \mathbb{Z}_{+}$. So s is an element of the set $(K(F)+\operatorname{cone}(A)) \cap \mathbb{Z}^{n}$, with $K(F)=F+\sum_{i=1}^{n} h_{i}$.
(b) Given

$$
\begin{equation*}
H=\left\{h_{1}, \ldots, h_{l}\right\} \tag{2.12}
\end{equation*}
$$

a Hilbert basis for cone (A). Assume a_{1}, \ldots, a_{n} do not generate a Hilbert basis and $H \cap \operatorname{int}(D)=\emptyset$. As w defined by (2.10) for $(s-F)$ given by (2.11) is an integer vector in $\operatorname{int}(D)$ then

$$
\begin{equation*}
w=\sum_{i=1}^{l} \alpha_{i} h_{i}, \alpha_{i} \in \mathbb{Z}_{+} \text {for } i=1, \ldots, l \tag{2.13}
\end{equation*}
$$

Now the vector $\left(\sum_{i \in J} h_{i}\right) \in c(H)$ occurs in the right side of (2.13).
(c) Let a_{1}, \ldots, a_{n} do not generate a Hilbert basis for cone (A) and let H given by (2.12) satisfy $H \cap \operatorname{int}(D) \neq \emptyset$. As w which is equal to (2.10) for $(s-F)$ given by (2.11) is an integer vector in $\operatorname{int}(D)$ then either w belongs to $H_{\text {int }}$ or

$$
\begin{equation*}
w=\sum_{i=1}^{l} \beta_{i} h_{i}, \beta_{i} \in \mathbb{Z}_{+} \text {for } i=1, \ldots, l \tag{2.14}
\end{equation*}
$$

Now the vector

$$
\left(\sum h_{i}, \quad h_{i} \in H_{i n t}\right)
$$

and hence $h_{i} \in H_{\text {int }}$ occurs in the right side of (2.14).
This implies inclusion \supseteq.
It is easy to see that the formula (2.9) is an analogue to the formula (1.2), i.e., to $K=F+1$.

Moreover, observe that Corollary 2.4 is satisfied if we replace $k(F)$ by $K(F)$ given by (2.9).

Example 2.6 Let A be as in Example 1.2.

Figure 2: The conductor $K(F)$ consists of black circles $(9,8)^{T}$ and $(9,9)^{T}$.

References

[1] Bachem A., The theory of polyhedra and discrete optimization, University of Bonn, Bonn 1979.
[2] Kannan R., Bachem A., Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix, SIAM J. Comput. 8 (1979) 499-507.
[3] Knight M. J., A generalization of a result of Sylvester's, Journal of Number Theory 12 (1980) 364-366.
[4] Schrijver A., Theory of linear and integer programming, WileyChichester, 1986.
[5] Simpson R.J., Tijdeman R., Multi-dimensional versions of a theorem of Fine and Wilf and a formula of Sylvester, Proc. Amer. Math. Soc. 131 (2003) 1661-1671.
[6] Sturmfels B., Algebraic recipes for integer programming, in: Hoşten S., Lee J., Thomas R.R., eds., Trends in Optimization, Proceedings of Symposia in Applied Mathematics, AMS, 61 (2004) 99-113.
[7] Sylvester J.J., Mathematical questions with their solutions, Educational Times 41 (1884) 21.

