SEMIRETRACTS - ALGORITHMIC PROBLEMS

TOMASZ KRAWCZYK

Jagiellonian University, Institute of Computer Science
Nawojki 11, 30-072 Krakow, Poland
krawczyk@ii.uj.edu.pl

KBN grant no 3 T11C 01027

1. Introduction

Semiretracts of free monoids were investigated first by Jim Anderson [1] and then were the subject of the papers - see references [1-6, 10-12, 14-15]. In the paper [1] J.A.Anderson presented a theorem that characterizes any semiretract S by means of two retracts R_{α}, R_{ω}. Namely, he showed that for any semiretract S there exist retracts R_{α} and R_{ω} such that $S=R_{\alpha} \cap R_{\omega}$. In the paper [2] the counterexample to this characteristic was given. In the sequel, in this paper we introduce the notion of dimension of S (written $\operatorname{dim}(S)$); namely, $\operatorname{dim}(S)=k$ iff k is the minimal number such that $S=\bigcap_{i=1}^{k} R_{i}$ for some retracts R_{1}, \ldots, R_{k}. We present a polynomial time algorithm that test if $\operatorname{dim}(S)=k$. On the other hand, we show that a little modification of this problem is $N P$-complete.

2. Basic Notions And Definitions

We assume the reader is familiar with the basic notions and concepts from the theories of semigroups and the the theories of computation.

Let A be any finite set and let A^{*} denote a free monoid generated by A. The length of a word $w \in A^{*}$, in symbols $|w|$, is defined to be the number of letters occuring in w (the length of the empty word 1 equals 0).

A retraction $r: A^{*} \longrightarrow A^{*}$ is a morphism for which $r \circ r=r$. A retract R of A^{*} is the image of A^{*} by a retraction. A semiretract S of A^{*} is the intersection of a family of retracts of A^{*}. A dimension of semiretract S - written $\operatorname{dim}(S)$ - is equal k iff k is the minimal number such that $S=\bigcap_{i=1}^{k} R_{i}$ for some retracts R_{1}, \ldots, R_{m}. The following theorem is due to J.A.Anderson - see [3].

Theorem 2.1. $\operatorname{Dim}(S)$ is finite for any semiretract S.
A word $w \in A^{*}$ is called a key-word if there is at least one letter in A that occurs exactly once in w and the letter is called a key of w. A set $C \subset A^{*}$ of key-words is called a key-code if there exists an injection key $: C \longrightarrow A$ such that
(1) for any $w \in C, \operatorname{key}(w)$ is a key of w,
(2) the letter $k e y(w)$ occurs in no word of C other than w itself.

Note that any key-code is in fact a code and that for a key-code C there is possible to exist more then one injection key : $C \longrightarrow A$. Given a key-code C and a fixed mapping key the set of all keys of words in C is denoted by key (C).

The following characterization of retracts is due to T. Head [?].

Theorem 2.2. $R \subset A^{*}$ is a retract of A^{*} if and only if $R=C^{*}$ where C is a key-code.

Because we shall be dealing with the complexity problems let us define the set of all inputs (instances) \mathcal{I}; namely a sequence $\left(C_{1}, \ldots, C_{k}, l\right)$ is in \mathcal{I} iff C_{1}, \ldots, C_{n} are key codes and l is a positive integer. Hence, with any $\left(C_{1}, \ldots, C_{n}, l\right) \in \mathcal{I}$ we can associate a semiretract $S=\bigcap_{i=1}^{n} C_{i}^{*}$. The first decision problem (given as a languge) $D I M-S E M \subset \mathcal{I}$ related to the dimension of semiretract can be defined as follows: $\left(C_{1}, \ldots, C_{n}, l\right)$ is in $D I M-S E M$ iff there exist l key codes D_{1}, \ldots, D_{l} such that $\bigcap_{i=1}^{n} C_{i}^{*}=\bigcap_{i=1}^{l} D^{i}$. We also will consider the decision problem $M I N-S E M \subset \mathcal{I}$; an instance $\left(C_{1}, \ldots, C_{n}, l\right)$ is in $M I N-S E M$ iff there exists key codes $C_{i_{1}}, \ldots, C_{i_{l}} \in\left\{C_{1}, \ldots, C_{n}\right\}$ for some $i_{1}, \ldots, i_{l} \in\{1, \ldots, n\}$ such that $\bigcap_{i=1}^{n} C_{i}^{*}=$ $\bigcap_{j=1}^{l} C_{i_{j}}^{*}$.

The main thesis of this paper is as follows: $D I M-S E M$ is in P while $M I N-$ $S E M$ is $N P$-complete.

3. Preliminary Results

Let $\left(C_{1}, \ldots, C_{n}, k\right) \in \mathcal{I}$. In [2] W. Forys and T. Krawczyk proved the theorem that allows us to narrow down the research on semiretracts to the case when all considered retracts have the same, common key-set K.

Theorem 3.1. Let $S=\cap_{i=1}^{n} C_{i}^{*}$ be a semiretract given by retracts C_{i}^{*} with keycodes $C_{i} \subset A^{*}$ for $i=1, \ldots, n$. There exist key-codes $D_{i} \subset A^{*}$ for $i=1, \ldots, n$ such that
(1) $S \subset D_{i}^{*} \subset C_{i}^{*}$ for all $i=1, \ldots, n$ (it means $S=\bigcap_{i=1}^{n} C_{i}^{*}$)
(2) $\operatorname{key}\left(D_{1}\right)=\operatorname{key}\left(D_{2}\right)=\ldots=\operatorname{key}\left(D_{n}\right)$.

Hence any semiretract S is an intersection of a family of retracts generated by key codes having the common set of keys.

Let $S=\bigcap_{i=1}^{n} D_{i}^{*}$ and let D_{1}, \ldots, D_{n} be key codes with the same set K. In the rest of the paper we assume that any $k \in K$ occurs in some word from the base of semiretract S.

Let us fix the order of retracts - $D_{1}^{*}, \ldots, D_{n}^{*}$. For any $k \in K$ there exist words $w_{1} \in D_{1}, \ldots, w_{n} \in D_{n}$ all with the key k. We write this fact in a matrix form (abbreviated n-lines):

$$
A(k)=\left[\begin{array}{ccc}
u_{1} & k & v_{1} \\
\vdots & \vdots & \vdots \\
u_{i} & k & v_{i} \\
\vdots & \vdots & \vdots \\
u_{n} & k & v_{n}
\end{array}\right]
$$

Hence, in the first column of $A(k)$ there are prefixes u_{i} of w_{i} and in the third column there are sufixes v_{i} of w_{i} such that $w_{i}=u_{i} k v_{i}$ for all $i=1, \ldots, n$. The matrix $A(k)$ is associated with the key $k \in K$. We denote in the sequel by $\operatorname{col}_{L}(k)$ and by $\operatorname{col}_{R}(k)$ the first (left) and the third column of A_{k}. Since k occurs in some word from the base of semiretract S, then u_{i} is a suffix of u_{j} or u_{j} is a suffix of u_{i} for all $i, j=1, \ldots, n$. For the same reason w_{i} is a prefix of w_{j} or w_{j} is a prefix of w_{i} for all $i, j=1, \ldots, n$. If it is necessary we underline that $A(k), \operatorname{col}_{L}(k), \operatorname{col}_{R}(k)$ were defined relatively to the order D_{1}, \ldots, D_{n}.

Definition 3.2. We say that $k \in K$ is initial key if $\operatorname{col}_{L}(k)=\left[\begin{array}{c}u \\ \vdots \\ u\end{array}\right]$ for some $u \in A^{*}$. We denote the word u by left (k) as it occurs on the left site of the letter k. We say that $k \in K$ is final if $\operatorname{col}_{R}(k)=\left[\begin{array}{c}w \\ \vdots \\ w\end{array}\right]$ for some $w \in A^{*}$. We denote the word w by $\operatorname{right}(k)$ as it occurs on the right site of k.

The set of all initial keys we denote by $L_{\text {init }}$. The set of all final keys we denote by $R_{\text {final }}$.
Definition 3.3. It is said that columns $U=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]$ and $V=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$ form an n-factorization of the word $w \in A^{+}$and it is written $U \leftrightarrow_{n} V$ iff $u_{i} v_{i}=w$ for $i=1, \ldots, n$ and there exist i, j such that $u_{i} \neq u_{j}$. Let $u \in A^{*}$ be the longest common prefix of u_{1}, \ldots, u_{n} and let v be the longest common suffix of v_{1}, \ldots, v_{n}. Then there exist $u_{1}^{\prime}, v_{1}^{\prime}, \ldots, u_{n}^{\prime}, v_{n}^{\prime} \in A^{*}$ such that $u_{i}=u u_{i}^{\prime}$ and $v_{i}=v_{i}^{\prime} v$ for all $i=1, \ldots, n$. Then the columns $U^{\prime}=\left[\begin{array}{c}u_{1}^{\prime} \\ \vdots \\ u_{n}^{\prime}\end{array}\right]$ and $V^{\prime}=\left[\begin{array}{c}v_{1}^{\prime} \\ \vdots \\ v_{n}^{\prime}\end{array}\right]$ form an n-factorization of some word $w^{\prime} \in A^{+}$. The n-factorization $U^{\prime} \leftrightarrow_{n} V^{\prime}$ is called the base and the word w^{\prime} is called the source of the n-factorization $U \leftrightarrow_{n} V$.
Definition 3.4. Let $k_{1}, k_{2} \in K$. We say that k_{2} follows k_{1} iff $\operatorname{col}_{R}\left(k_{1}\right) \leftrightarrow \operatorname{col}_{L}\left(k_{2}\right)$ constitutes n-factorization of some word $w \in A^{+}$. The word w is denoted by $b k\left(k_{1}, k_{2}\right)$ as it occurs between keys k_{1} and k_{2}.

The above introduced notations allows us to give a simple lemma that presents a method for obtaining any word in the base of semiretract $S=\bigcap_{i=1}^{n} D_{i}^{*}$.
Lemma 3.5. Let $k_{1}, \ldots, k_{p} \in K$ be a sequence of keys of the semiretract S such that (1) k_{1} is initial key, (2) k_{p} is final key and k_{i+1} follows k_{i} for $i=1, \ldots, p-1$. Then the word

$$
w=\operatorname{left}\left(k_{1}\right) k_{1} b k\left(k_{1}, k_{2}\right) k_{2} \ldots \ldots k_{p-1} b k\left(k_{p-1}, k_{p}\right) k_{p} \operatorname{right}\left(k_{p}\right)
$$

is in the base (code) C of semiretract S. Moreover, for any word w in C there exist keys $k_{1}, \ldots, k_{p} \in K$ such that the above is true.

Any sequence of keys $k_{1}, \ldots, k_{p} \in K$ fulfilling assumptions (1)-(3) is called a generating key sequence.

Remark 3.6. Finding a word from the base of the semiretract is equivalent to finding a sequence of keys which fulfils the conditions from the above theorem.

Example 3.7. Assume that E_{1}, E_{2} and E_{3} are key codes with the same key set $K=\left\{k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right\}$.
$E_{1}=\left\{a b k_{1} a b a, k_{2} a a, b k_{3} b, b k_{4} b a b a, k_{5} a a\right\}$,
$E_{2}=\left\{a b k_{1} a b, a k_{2} a, a b k_{3} b, a b k_{4} b a b, a k_{5} a\right\}$
$E_{3}=\left\{a b k_{1} a, b a k_{2}, a a b k_{3} b, b a b k_{4} b a\right\}$.
Hence $A\left(k_{1}\right), A\left(k_{2}\right), A\left(k_{3}\right), A\left(k_{4}\right)$ and $A\left(k_{5}\right)$ are equal respectively

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
a & b & k_{1} & a & b & a \\
a & b & k_{1} & a & b & \\
a & b & k_{1} & a & &
\end{array}\right],\left[\begin{array}{llll}
& k_{2} & a & a \\
& a & k_{2} & a \\
b & a & k_{2} & \\
\end{array}\right],\left[\begin{array}{llll}
& & k_{3} & b \\
& a & k_{3} & b \\
a & a & k_{3} & b
\end{array}\right],} \\
& {\left[\begin{array}{lllllll}
& & b & k_{4} & b & a & b \\
& a & b & k_{4} & b & a & b \\
b & a & b & k_{4} & b & a & \\
&
\end{array}\right] \text { and }\left[\begin{array}{llll}
& & k_{5} & a \\
& a & k_{5} & a \\
a & a & k_{5} & \\
& & &
\end{array}\right] \text {. }}
\end{aligned}
$$

For example:

$$
\operatorname{col}_{L}\left(k_{1}\right)=\left[\begin{array}{ll}
a & b \\
a & b \\
a & b
\end{array}\right], \operatorname{col}_{R}\left(k_{1}\right)=\left[\begin{array}{ccc}
a & b & a \\
a & b & \\
a & &
\end{array}\right], \operatorname{col}_{L}\left(k_{2}\right)=\left[\begin{array}{l}
\\
\\
b
\end{array} a\right.
$$

Hence k_{1} is initial key and k_{3} is final key. The key k_{2} follows k_{1}, since $\operatorname{col}_{R}\left(k_{1}\right) \leftrightarrow_{3} \operatorname{col}_{L}\left(k_{2}\right)$ form 3-factorization of the word $a b a$. The 3-factorization $\left[\begin{array}{ll}b & a \\ b & \\ \hline\end{array}\right] \leftrightarrow_{3}\left[\begin{array}{ll} & a \\ b & a\end{array}\right]$ is the base and the word $b a$ is the source of 3 -factorization $\operatorname{col}_{R}\left(k_{1}\right) \leftrightarrow \operatorname{col}_{L}\left(k_{2}\right)$.
Since k_{1} is initial key, k_{2} follows k_{1}, k_{3} follows k_{2} and k_{3} is final, then the sequence k_{1}, k_{2}, k_{3} is the generating key sequence. Hence the word

$$
\operatorname{left}\left(k_{1}\right) k_{1} b k\left(k_{1}, k_{2}\right) k_{2} b k\left(k_{2}, k_{3}\right) k_{3} r i g h t\left(k_{3}\right)=a b k_{1} a b a k_{2} a a k_{3} b
$$

is in the base of semiretract $E_{1}^{*} \cap E_{2}^{*} \cap E_{3}^{*}$.

4. The problem $D I M-S E M$ is in P.

Suppose now that $\left(C_{1}, \ldots, C_{n}, l\right) \in \mathcal{I}$. By the previous paragraph there exists a sequence of key codes D_{1}, \ldots, D_{n} with the same set of keys K such that $S=\bigcap_{i=1}^{n} D_{i}^{*}$.

Let $k_{1}, k_{2} \in K$ be any keys such that k_{2} follows k_{1}. Assume that n-factorization $U \leftrightarrow_{n} V$ is the base of $\operatorname{col}_{R}\left(k_{1}\right) \leftrightarrow_{n} \operatorname{col}_{L}\left(k_{2}\right)$. If k_{3} and k_{4} are such that k_{4} follows k_{3} and the base of n-factorization $\operatorname{col}_{R}\left(k_{3}\right) \leftrightarrow_{n} \operatorname{col}_{L}\left(k_{4}\right)$ is equal $U \leftrightarrow_{n} V$, then k_{4} follows k_{1} and k_{2} follows k_{3} as well and the bases of n-factorizations $\operatorname{col}_{R}\left(k_{1}\right) \leftrightarrow_{n} \operatorname{col}_{R}\left(k_{4}\right)$ and $\operatorname{col}_{L}\left(k_{3}\right) \leftrightarrow_{n} \operatorname{col}_{R}\left(k_{2}\right)$ are equal $U \leftrightarrow_{n} V$. Hence, with the pair $U \leftrightarrow_{n} V$ we can associate two sets $R, L \subset K$ such that for all $k \in R, \bar{k} \in L$ the key \bar{k} follows k and the base of n-factorization $\operatorname{col}_{R}(k) \leftrightarrow_{n} \operatorname{col}_{L}(\bar{k})$ is equal $U \leftrightarrow_{n} V$.

Let us denote by $\mathcal{B}\left(D_{1}, \ldots, D_{n}\right)$ the set of all n-factorizations that occur as the base of n-factorization $\operatorname{col}_{R}(k) \leftrightarrow \operatorname{col}_{L}(\bar{k})$ for some $k, \bar{k} \in K$ such that \bar{k} follows k. It may happen that the set R or L associated with an element $U \leftrightarrow_{n}$ $V \in \mathcal{B}\left(D_{1}, \ldots, D_{n}\right)$ consists of exactly one element. Suppose that $L=\{l\}$ and $R=\left\{r_{1}, \ldots, r_{m}\right\}$ for some $l, r_{1}, \ldots, r_{m} \in K$. Note that in any generating key sequence the key l has to occur after any r_{i} whenever r_{i} occurs in a generating key sequence. Let us define for $i=1, \ldots, n$

$$
D_{i}^{\prime}=\left(D_{i} \backslash\left\{v_{i}(l), v_{i}\left(r_{1}\right), \ldots, v_{i}\left(r_{m}\right)\right\}\right) \cup\left\{v_{i}\left(r_{1}\right) v_{i}(l), \ldots, v_{i}\left(r_{m}\right) v_{i}(l)\right\}
$$

where $v_{i}(k)$ for any $k \in K$ denotes key word in D_{i} with k as the key letter. Of course, for $i=1, \ldots, n$ the set D_{i}^{\prime} is a key code (fix the letter r_{j} as the key of word $v_{i}(l) v_{i}\left(r_{j}\right)$ for $\left.j=1, \ldots, m\right)$. By the previous considerations $S=\bigcap_{i=1}^{n} D_{i}^{\prime}$. Note
that the number of elements in $\mathcal{B}\left(D_{1}^{\prime}, \ldots, D_{n}^{\prime}\right)$ relatively to $\mathcal{B}\left(D_{1}, \ldots, D_{n}\right)$ diminish to 1 . We could repeat the following procedure in the case R consists of exactly one element. Hence, we can state:

Lemma 4.1. Let $S=\bigcap_{i=1}^{n} D_{i}^{*}$ and let D_{1}, \ldots, D_{n} be key codes with the same key set K. Then there exist key codes E_{1}, \ldots, E_{n} such that
(1) $S \subset E_{i}^{*} \subset D_{i}^{*}$ for $i=1, \ldots, n$ (it means $S=\bigcap_{i=1}^{n} E_{i}^{*}$)
(2) $\operatorname{key}\left(E_{1}\right)=\operatorname{key}\left(E_{2}\right)=\ldots=\operatorname{key}\left(E_{n}\right)$
(3) if $U \leftrightarrow_{n} V \in \mathcal{B}\left(E_{1}, \ldots, E_{n}\right)$ then the sets R, L associated with $U \leftrightarrow_{n} V$ have at least two members.

Suppose now that $S=\bigcap_{i=1}^{n} E_{i}^{*}$ and the sequence E_{1}, \ldots, E_{n} fulfills the properties listed in the previous lemma.

Definition 4.2. Let $U \leftrightarrow_{n} V \in \mathcal{B}\left(C_{1}, \ldots, C_{n}\right)$ be an n-factorization of the word $w_{1} \in A^{+}$. Let $L, R \subset K$ be associated with $U \leftrightarrow_{n} V$. We say that $w_{2} \in A^{+}$ separates R and L iff w_{2} is the word of the maximal length containing w_{1} and the equality

$$
\{k b k(k, \bar{k}) \bar{k} \mid k \in R, \bar{k} \in L\}=\left\{k r i g h t(k) w_{2} l e f t(\bar{k}) \bar{k} \mid k \in R, \bar{k} \in L\right\}
$$

is true for some words $\operatorname{right}(k), \operatorname{left}(\bar{k}) \in A^{*}$. For any $k \in K$ the word $\operatorname{left}(k) \operatorname{kright}(k)$ is now defined and we denote this word by $\operatorname{root}(k)$. Note that the word w_{2} is properly defined. It may happened that $w_{1}=w_{2}$ of course.

Let us fix the order of all members of the set $\mathcal{B}\left(E_{1}, \ldots, E_{n}\right)-U_{1} \leftrightarrow_{n} V_{1}, \ldots, U_{m} \leftrightarrow_{n}$ V_{n}. Assume that sets $R_{j}, L_{j} \subset K$ are associated with the base $U_{j} \leftrightarrow_{n} V_{j}$ and denote the separating word for the pair R_{j}, L_{j} by sep j_{j}. Note that the families $\left\{L_{\text {init }}, L_{1}, \ldots, L_{m}\right\}$ and $\left\{R_{\text {final }}, R_{1}, \ldots, R_{m}\right\}$ constitute the partitions of the set K. Note that by the previous lemma every set of those families except $L_{\text {init }}$ or $R_{\text {final }}$ has to contain at least 2 members.

Example 4.3.

$$
\mathcal{B}\left(E_{1}, E_{2}, E_{3}\right)=\left\{\left[\begin{array}{ll}
b & a \\
b & \\
&
\end{array}\right] \leftrightarrow_{3}\left[\begin{array}{ll}
& a \\
b & a
\end{array}\right],\left[\begin{array}{ll}
a & a \\
a & \\
&
\end{array}\right] \leftrightarrow_{3}\left[\begin{array}{ll}
& a \\
a & a
\end{array}\right]\right\} .
$$

$L_{\text {init }}=\left\{k_{1}\right\}, L_{1}=\left\{k_{2}, k_{4}\right\}, L_{2}=\left\{k_{3}, k_{5}\right\}$.
$R_{\text {final }}=\left\{k_{3}\right\}, R_{1}=\left\{k_{1}, k_{4}\right\}, R_{2}=\left\{k_{2}, k_{5}\right\}$.
The families $\left\{L_{\text {init }}, L_{1}, L_{2}\right\}$ and $\left\{R_{\text {final }}, R_{1}, R_{2}\right\}$, where R_{1}, L_{1} and R_{2}, L_{2} are associated respectively with the first and the second element of $\mathcal{B}\left(E_{1}, \ldots, E_{n}\right)$, form the partitions of the set K.
The word $a b a \in A^{+}$separates R_{1} and L_{1}. The word $a a$ separates R_{2} and L_{2}.
The roots of $k_{1}, k_{2}, k_{3}, k_{4}$ and k_{5} are equal respectively $b a k_{1}, k_{2}, k_{3} b, b k_{4} b, k_{5}$.
Now we are ready to give the basic for our considerations lemma.
Lemma 4.4. Let $S=\bigcap_{i=1}^{n} E_{i}^{*}$ be a semiretract such that the sequence of key codes E_{1}, \ldots, E_{n} with a common key set K fulfills the conditions given in Lemma 4.1. Then, for any key code F with key set \bar{K} such that $S \subset F^{*}$ there exists a key code G with K as the key set such that
(1) $S \subset G^{*} \subset F^{*}$
(2) Let $k \in K$. Assume that if k is not final, then $k \in R_{s}$ for some $s \in\{1, \ldots, m\}$ and if k is not initial, then $k \in L_{t}$ for some $t \in\{1, \ldots, m\}$. If $v(k) \in G$ is the key word with $k \in K$ as the key letter, then $\operatorname{root}(k)$ is a subword of $v(k)$. Moreover, if
(a) k is initial and final key, then $v(k)=\operatorname{root}(k)$,
(b) k is initial and not final key, then $v(k)$ is a subword of root $(k) \operatorname{sep}_{t}$,
(c) k is initial and not final key, then $v(k)$ is a subword of sep $\operatorname{soot}^{\operatorname{root}}(k)$,
(d) k is not final and not initial key, then v is a subword of $\operatorname{sep}_{s} \operatorname{root}(k) \operatorname{sep}_{t}$.

Proof. Let us denote by $w(\bar{k})$ the key word in F with $\bar{k} \in \bar{K}$ as the key letter. For any $k \in K$ let $\overline{k_{1}}, \ldots, \overline{k_{p}} \in \bar{K}$ be the sequence of all keys that occur in $\operatorname{root}(k)$. We denote the word $w\left(\overline{k_{1}}\right) \ldots w\left(\overline{k_{p}}\right) \in F^{*}$ by $\operatorname{root}^{F}(k)$. Note that $\operatorname{root}^{F}(k)$ is uniquely determined.

For any separating word sep_{j} let $\overline{k_{1}}, \ldots, \overline{k_{p}}$ be the sequence of all keys in \bar{K} that occur in sep_{j} for $j=1, \ldots, m$. We denote the word $w\left(\overline{k_{1}}\right) \ldots w\left(\overline{k_{p}}\right) \in F^{*}$ by $\operatorname{sep}_{j}^{F}$. Note that $s e p_{j}^{F}$ is uniquely determined.

Let w be a word in the base of semiretract S and let $k_{1}, \ldots, k_{p} \in K$ be the generating key sequence for w. Let us consider the double factorization of the word w. Assume that for any $i=1, \ldots, n$ the number $j_{i} \in\{1, \ldots, m\}$ is such that $U_{j_{i}} \leftrightarrow_{n} V_{j_{i}}$ is the base of n-factorization $\operatorname{col}_{R}\left(k_{i}\right) \leftrightarrow_{n} \operatorname{col}_{L}\left(k_{i+1}\right)$. By Lemma 3.5 and by Definition 4.2.

$$
w=\operatorname{root}\left(k_{1}\right) \operatorname{sep}_{j_{1}} \operatorname{root}\left(k_{2}\right) \operatorname{sep}_{j_{2}} \ldots . . \operatorname{sep}_{j_{p-1}} \operatorname{root}\left(k_{p}\right) .
$$

On the other hand, by $S \subset F^{*}$

$$
w=\operatorname{root}^{F}\left(k_{1}\right) \operatorname{sep}_{j_{1}}^{F} \operatorname{root}^{F}\left(k_{2}\right) \operatorname{sep}_{j_{2}}^{F} \ldots . . \operatorname{sep}_{j_{p-1}}^{F} \operatorname{root}^{F}\left(k_{p}\right) .
$$

Since any set $R_{1}, L_{1}, \ldots, R_{m}, L_{m}$ has at least 2 elements, then the word $s e p_{j_{i}}^{F}$ has to be a subword of $\operatorname{sep}_{j_{i}}$. Hence the word $\operatorname{root}{ }^{F}\left(k_{i}\right)$ contains $\operatorname{root}\left(k_{i}\right)$ as a subword. Since any letter $k \in K$ occurs in some word from the base of S, then the word $\operatorname{root}(k)$ is a subword of $\operatorname{root}^{F}(k)$ and for any $j \in\{1, \ldots, m\}$ the word sep p_{j} contains $\operatorname{sep}_{j}^{F}$ as a subword.

Let $k \in K$. If k is not final, then assume that $k \in R_{s}$ for some $s \in\{1, \ldots, m\}$. If k is not initial, then assume that $k \in L_{t}$ for some $t \in\{1, \ldots, m\}$. For any $k \in K$ let $v(k)$ (with k as the key letter) denote the word

- $\operatorname{root}^{F}(k)$ if k is initial and final,
- $\operatorname{root}^{F}(k) \operatorname{sep}_{t}^{F}$ if k is initial and not final,
- $\operatorname{sep}_{s}^{F} \operatorname{root}^{D}(k)$ if k is final and not initial,
- $\operatorname{sep}_{s}^{F} \operatorname{root}^{F}(k) \operatorname{sep}_{t}^{F}$ if k is not initial and not final.

Then the key code

$$
G=\{v(k) \mid k \in K\}
$$

makes our theorem true.
Definition 4.5. Let $w_{1}, \ldots, w_{m} \in A^{+}$be a sequence of words and let $U\left(w_{j}\right) \leftrightarrow$ $V\left(w_{j}\right)$ be an l-factorization of w_{j} for $j=1, \ldots, m$. We say that the sequence $U\left(w_{1}\right) \leftrightarrow_{l} V\left(w_{1}\right), \ldots, U\left(w_{m}\right) \leftrightarrow_{l} V\left(w_{m}\right)$ constitute l-factorization of the sequence w_{1}, \ldots, w_{m} if and only if the columns $U\left(w_{i}\right), V\left(w_{j}\right)$ for $i, j=1, \ldots, m$ constitute $l-$ factorization only if $i=j$.

Hence, the sequence $U_{1} \leftrightarrow_{n} V_{1}, \ldots, U_{m} \leftrightarrow_{n} V_{m}$ forms n-factorization of the sequence $w_{1}, \ldots, w_{m} \in A^{+}$, where w_{i} is a subword of $s e p_{i}$ for $i=1, \ldots, m$. As a consequence, there exists n-factorization of the sequence $\operatorname{sep}_{1}, \ldots, \operatorname{sep}_{m}$ (it is obtained by modifying a little bit the columns $\left.U_{1}, V_{1}, \ldots, U_{m}, V_{m}\right)$.

Suppose now that $\operatorname{dim}(S) \leq l$. By definition $S=\bigcap_{i=1}^{l} F_{i}^{*}$ for some key codes F_{1}, \ldots, F_{l}. Since $S \subset F_{i}^{*}$, then by the previous lemma there exists key code G_{i} with the key set K such that $S \subset G_{i}^{*} \subset F_{i}^{*}$ for $i=1, \ldots, l$. The form of any key word in G_{i} and the equality $S=\bigcap_{i=1}^{l} G_{i}^{*}$ imply, that there exist l-factorization of the sequence $s e p_{1}, \ldots, s e p_{m}$.

Suppose now that a sequence $X^{1} \leftrightarrow_{l} Y^{1}, \ldots, X^{m} \leftrightarrow_{l} Y^{m}$ forms an l-factorization of the sequence $s e p_{1}, \ldots, \operatorname{sep}_{m}$. Assume that $k \in K$ is not initial and not final key. Then $k \in R_{s}$ and $k \in L_{t}$ for some $s, t \in\{1, \ldots, m\}$. Let us define l-key words with k as the key letters as follows (we use the matrix form):

$$
A(k)=\left[\begin{array}{ccc}
X_{1}^{t} l e f t(k) & k & \operatorname{right}(k) Y_{1}^{s} \\
\vdots & \vdots & \vdots \\
X_{i}^{t} l \operatorname{left}(k) & k & \operatorname{right}(k) Y_{i}^{s} \\
\vdots & \vdots & \vdots \\
X_{l}^{t} l e f t(k) & k & \operatorname{right}(k) Y_{l}^{s}
\end{array}\right],
$$

where X_{i}^{t} and Y_{i}^{s} for $i=1, \ldots, l$ denote the entries in the $i-$ th rows of columns X^{t} and Y^{s} respectively. In the case k is initial the left column of $A(k)$ consist entirely of left (k) and in the case k is final the right column of $A(k)$ consist entirely of $\operatorname{right}(k)$. It is not hard to verify that the intersection of l retracts with l key codes defined above is equal with S. As a consequence we have the following statement true.

Theorem 4.6. Let $S=\bigcap_{i=1}^{n} E_{i}$, where the sequence of key codes E_{1}, \ldots, E_{n} fulfills the conditions given in Lemma 4.5. Then, $\operatorname{dim}(S) \leq l$ iff there exist $l-f a c t o r i z a t i o n ~$ of the sequence sep,\ldots, sep $_{m}$.

To verify if there exist an l-factorization of the sequence $s e p_{1}, \ldots, s e p_{m}$ let us consider a network $D=(V, A)$ with a capacity function $c: A \rightarrow \mathbb{N}$. Let $V=$ $\{s, t\} \cup V_{1} \cup V_{2}$ be the set of all vertices in a digraph $D=(V, A)$, where $s, t \in V$ are respectively the source and the sink of the network,

$$
V_{1}=\left\{s e p_{j} \mid j \in\{1, \ldots, m\}\right\}
$$

and

$$
V_{2}=\left\{w \mid w \text { is a subword of some sep }{ }_{j}, j \in\{1, \ldots, m\}\right\}
$$

Let

$$
A=\left\{s, V_{1}\right\} \cup E \cup V_{2} \times\{t\},
$$

where $E \subset V_{1} \times V_{2}$ is the set of edges defined as follows: $\left(v_{1}, v_{2}\right) \subset V_{1} \times V_{2}$ is in E iff v_{2} is a subword of v_{1}. Finally, we define the capacity function by the following rules:

- $c\left(s, v_{1}\right)=x$ for $\left(s, v_{1}\right) \in\{s\} \times V_{1}$ if the word v_{1} occurs exactly x times in the sequence $s e p_{1}, \ldots, s e p_{m}$,
- $c\left(v_{1}, v_{2}\right)=\infty$ for $\left(v_{1}, v_{2}\right) \in E$,
- $c\left(v_{2}, t\right)=\max \left(m, l\left(v_{n}\right)\right)$ for $\left(v_{2}, t\right) \in\left\{v_{2}\right\} \times V_{2}$, where $l\left(v_{2}\right)$ is the number of all different l-factorization of the word v_{2} with v_{2} as the source. Since such an l-factorization of v_{2} is fully determined by the left column of l-factorization, then

$$
l\left(v_{2}\right)=\sum_{k_{1}, k_{2} \geq 1, k_{1}+k_{2} \leq l}\binom{l}{k_{1}}\binom{l-k_{1}}{k_{2}}\left(\left|v_{2}\right|-1\right)^{l-\left(k_{1}+k_{2}\right)}
$$

where the term $\binom{l}{k_{1}}\binom{l-k_{1}}{k_{2}}\left(\left|v_{2}\right|-1\right)^{l-\left(k_{1}+k_{2}\right)}$ denotes the number of columns with exactly:

- k_{1} rows filled up with 1 ,
$-k_{2}$ rows filled up with v_{2},
$-l-\left(k_{1}+k_{2}\right)$ rows filled up with nonempty, proper prefix of v_{2}.
Lemma 4.7. There exist an l-factorization of the sequence $\operatorname{sep}_{1}, \ldots$, sep p_{m} iff the maximal flow of the network $D=(V, A)$ with the capacity function $c: E \rightarrow \mathcal{N}$ is equal m.

Proof. Let $U_{1} \leftrightarrow_{l} V_{1}, \ldots, U_{m} \leftrightarrow_{l} V_{m}$ be an l-factorization of the sequence $s e p_{1}, \ldots$, sep $_{m}$ with the sources respectively w_{1}, \ldots, w_{n}. Let us consider the function $f: A \rightarrow \mathbb{N}$ defined as follows:

- $f\left(s, v_{1}\right)=c\left(s, v_{1}\right)$ for $\left(s, v_{1}\right) \in\{s\} \times V_{1}$,
- $f\left(v_{1}, v_{2}\right)=x$ for $\left(v_{1}, v_{2}\right) \in E$ if the pair $\left(v_{1}, v_{2}\right)$ occurs x time in the sequence $\left(\operatorname{sep}_{1}, w_{1}\right), \ldots,\left(\operatorname{sep}_{m}, w_{m}\right)$,
- $f\left(v_{2}, t\right)=y$ for $\left(v_{2}, t\right) \in V_{2} \times\{t\}$ if the word v_{2} occurs in the sequence w_{1}, \ldots, w_{m} exactly y times.
We can easily check that f satisfy the conservation and feasibility rules and hence f is a flow function with the flow value m. By the max-flow min-cut theorem for the cut $(\{s\}, V \backslash\{s\})$ with the capacity m we conclude that f is the maximal flow in the network.

Suppose now that $f: A \rightarrow \mathbb{N}$ is a maximal flow function in the network and the flow value is m. Let $v_{1} \in V_{1}$. Since the cut $(\{s\}, V \backslash\{s\})$ has the capacity m, then $f\left(s, v_{1}\right)=c\left(s, v_{1}\right)=x$ for some $x \in \mathbb{N}$. Thus, the word v_{1} occurs on the list $\operatorname{sep}_{1}, \ldots$, sep $_{m}$ exactly x times. Assume, that $j_{1}, \ldots, j_{x} \in\{1, \ldots, m\}$ are such that sep $_{j_{i}}=v_{1}$ for $i=1, \ldots, x$. Hence, by the conservation rule for the vertex v_{1} there exists a list $L\left(v_{1}\right)=w_{j_{1}}, \ldots, w_{j_{k}}$ such that $w_{j_{i}}$ is the subword of $v_{1}=s e p_{j_{i}}$ and any word $v_{2} \in L\left(v_{1}\right)$ occurs on the list $L\left(v_{1}\right)$ exactly $f\left(v_{1}, v_{2}\right)$ times. Hence, with any separating word sep $j_{j_{i}}$ we can associate a subword $w_{j_{i}}$ for all $i=1, \ldots, x$. Repeating this step for any vertex $v_{1} \in V_{1}$ we obtain a sequence w_{1}, \ldots, w_{m} such that w_{i} is associated with sep ${ }_{i}$ for $i=1, \ldots, m$.

Let us consider any w_{i} for $i=1, \ldots, m$ and assume that w_{i} occurs exactly y $(y \in \mathbb{N})$ times on the list w_{1}, \ldots, w_{m}. Suppose that $w_{i}=w_{k_{1}}=\ldots=w_{k_{y}}$ for some $k_{1}, \ldots, k_{y} \in\{1, \ldots, m\}$. The conservation rule for the vertex $w_{i} \in V_{2}$ and the feasibility rule for the edge (w_{i}, t) asserts that we can find y different l-factorizations of the word w_{i}; let us denote them by $U_{k_{1}} \leftrightarrow_{l} V_{k_{1}}, \ldots, U_{k_{y}} \leftrightarrow_{l} V_{k_{y}}$. Repeating this step for any $w_{i} \in\left\{w_{1}, \ldots, w_{m}\right\}$ we obtain a sequence of l-factorizations $U_{1} \leftrightarrow_{l} V_{1}, \ldots, U_{m} \leftrightarrow_{l} V_{m}$, where $U_{j} \leftrightarrow V_{j}$ is an l-factorization of w_{j} for $j=1, \ldots, m$. Note that if $U^{1} \leftrightarrow_{l} V^{1}$ and $U^{2} \leftrightarrow_{l} V^{2}$ form l-factorizations with different source words, then U^{1}, V^{2} and U^{2}, V^{1} as well does not form l-factorization. It follows that the sequence $U_{1} \leftrightarrow_{l} V_{1}, \ldots, U_{m} \leftrightarrow_{l} V_{m}$ forms the l-factorization of the sequence
w_{1}, \ldots, w_{m}. Thus, sine w_{i} is a subword of $s e p_{i}$ for $i=1, \ldots, m$, then there exists an l-factorization of the sequence $s e p_{1}, \ldots, s e p_{m}$.

Assume that $\left(C_{1}, \ldots, C_{m}, l\right) \in \mathcal{I}$. Then $S=\bigcap_{i=1}^{n} C_{i}^{*}$. Then we compute the sequence of key codes E_{1}, \ldots, E_{n} that satisfy the properties listed in the Lemma 4.1. Next, we produce the sequence $s e p_{1}, \ldots, \operatorname{sep}_{m}$ of all separating word. We refer to [2] to show that the list $s e p_{1}, \ldots$, sep $_{m}$ can be computed in polynomial time. After all, for the sequence $\operatorname{sep}_{1}, \ldots, \operatorname{sep}_{m}$ we construct the network as presented above. The instance $\left(C_{1}, \ldots, C_{m}, l\right) \in D I M-S E M$ iff the maximal flow in the network is equal m. Since $M A X-F L O W$ is in P, then $D I M-S E M$ is also in P.

5. Problem $M I N-S E M$ is $N P$-complete.

The problem $M I N-S E M$ is in $N P$. For any $\left(C_{1}, \ldots, C_{n}, l\right) \in \mathcal{I}$ a nondeterministic Turing machine indicates l key codes $C_{i_{1}}, \ldots, C_{i_{l}} \in\left\{C_{1}, \ldots, C_{n}\right\}$ for some $i_{1}, \ldots, i_{l} \in\{1, \ldots, m\}$. Next, it constructs minimal, deterministic automatons A_{1}, A_{2} that recognize the base of semiretracts $\bigcap_{i=1}^{n} C_{i}^{*}$ and $\bigcap_{j=1}^{l} C_{i_{j}}^{*}$ respectively. Finally, it tests if $A_{1}=A_{2}$. In [2] the polynomial time algorithm for constructing minimal, deterministic automatons that recognizes the base of semiretract is presented. Finally, we can test if $A_{1}=A_{2}$ in polynomial time.

We prove that $3-S A T \leq_{P} M I N-R E T$. Let $\left\{x_{1}, \ldots, x_{p}\right\}$ be the set of all variables that occur in the formula $\alpha=\bigwedge_{j=1}^{m} \alpha_{j}$, where $\alpha_{j} \equiv \alpha_{j}^{1} \vee \alpha_{j}^{2} \vee \alpha_{j}^{3}$, $j=1, \ldots, m$. The transformation \mathcal{T}, for given formula α, produces $2 p$ key codes $C_{x_{1}}, C_{\neg x_{1}}, \ldots ., C_{x_{p}}, C_{\neg x_{p}}$ and the special key code denoted by C_{s}. We will prove that α is satisfiable iff $\left(C_{x_{1}}, C_{\neg x_{1}}, \ldots, C_{x_{p}}, C_{\neg x_{p}}, C_{s}, p+1\right)$ is in MIN $-S E M$. Let us describe the transformation $\mathcal{T}(\alpha)$.

All key codes $C_{x_{1}}, C_{\neg x_{1}}, \ldots ., C_{x_{p}}, C_{\neg x_{p}}$ have the same key set

$$
K=\left\{f, h, x_{1}, \ldots, x_{p}, \alpha_{1}, \ldots, \alpha_{m}\right\}
$$

and are defined over the alphabet

$$
A=K \cup\left\{h^{\prime}, x_{1}^{\prime}, \ldots, x_{p}^{\prime}, \alpha_{1}^{\prime}, \ldots, \alpha_{m}^{\prime}\right\}
$$

Let us fix the order $C_{x_{1}}, C_{\neg x_{1}}, \ldots, C_{x_{p}}, C_{\neg x_{p}}, C_{s}$ of all key codes. We define any key code by giving all columns $\operatorname{col}_{L}(k), \operatorname{col}_{R}(k)$ for any $k \in K$ with respect to the order $C_{x_{1}}, C_{\neg x_{1}}, \ldots, C_{x_{p}}, C_{\neg x_{p}}, C_{s}$.

For any key $x_{i}, i=1, \ldots, p$ associated with the variable x_{i}, we define $\operatorname{col}_{R}\left(x_{i}\right)$ putting x_{i}^{\prime} at the positions that correspond to key codes $C_{x_{i}}$ and $C_{\neg x_{i}}$ and putting 1 at the other positions. For any key $\alpha_{j}, j=1, \ldots, m$ associated with the clause α_{j} we define $\operatorname{col}_{R}\left(\alpha_{j}\right)$ putting α_{j}^{\prime} at the positions that correspond to the key codes $C_{\alpha_{j}^{1}}, C_{\alpha_{j}^{2}}$ and $C_{\alpha_{j}^{3}}$ and putting 1 at the other positions. For the key $h \in K$ we define $\operatorname{col}_{R}(h)$ putting h^{\prime} at the position that correspond to the key code C_{s} and putting 1 at the other positions. To make x_{1} the one, initial key and f the one, final key we define $\operatorname{col}_{L}\left(x_{1}\right)$ and $\operatorname{col}_{R}(f)$ putting 1 on any positions. The columns $\operatorname{col}_{L}\left(x_{2}\right), \ldots ., \operatorname{col}_{L}\left(x_{p}\right), \operatorname{col}_{L}\left(\alpha_{1}\right), \ldots, \operatorname{col}_{R}\left(\alpha_{m}\right), \operatorname{col}_{L}(h)$ and $\operatorname{col}_{L}(f)$ are defined such that the sequence of keys

$$
\left(x_{1}, x_{2}, \ldots, x_{p}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}, h, f\right)
$$

is the only one possible generating key sequence. By Lemma 3.5, the base of semiretracts consists of exactly one word, namely

$$
x_{1} x_{1}^{\prime} x_{2} x_{2}^{\prime} \ldots x_{p} x_{p}^{\prime} \alpha_{1} \alpha_{1}^{\prime} \alpha_{2} \alpha_{2}^{\prime} \ldots . \alpha_{m} \alpha_{m}^{\prime} h h^{\prime} f .
$$

Example 5.1. Let

$$
\phi \equiv\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)
$$

The set of all variables is equal to $\left\{x_{1}, x_{2}, x_{3}\right\}$. Hence we define key codes $C_{x_{1}}, C_{\neg x_{1}}$, $C_{x_{2}}, C_{\neg x_{2}}, C_{x_{3}}, C_{\neg x_{3}}, C_{s}$ with the same set of keys $K=\left\{f, h, x_{1}, x_{2}, x_{3}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ over the alphabet $K \cup\left\{h^{\prime}, y_{1}, y_{2}, y_{3}, a_{1}, a_{2}, a_{3}\right\}$. Key codes $C_{x_{1}}, C_{\neg x_{1}}, C_{x_{2}}, C_{\neg x_{2}}$, $C_{x_{3}}, C_{\neg x_{3}}, C_{s}$ are presented in the matrix form:

$$
\begin{array}{cl}
x_{1} & - \\
\neg x_{1} & - \\
x_{2} & - \\
\neg x_{2} & - \\
x_{3} & - \\
\neg x_{3} & - \\
s & -
\end{array}\left[\begin{array}{lll}
1 & x_{1} & x_{1}^{\prime} \\
1 & x_{1} & x_{1}^{\prime} \\
1 & x_{1} & 1 \\
1 & x_{1} & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & x_{2} & 1 \\
1 & x_{2} & 1 \\
x_{1}^{\prime} & x_{2} & x_{2}^{\prime} \\
x_{1}^{\prime} & x_{2} & x_{2}^{\prime} \\
x_{1}^{\prime} & x_{2} & 1 \\
x_{1}^{\prime} & x_{2} & 1 \\
x_{1}^{\prime} & x_{2} & 1
\end{array}\right],\left[\begin{array}{ccc}
x_{2}^{\prime} & x_{3} & 1 \\
x_{2}^{\prime} & x_{3} & 1 \\
1 & x_{3} & 1 \\
1 & x_{3} & 1 \\
x_{2}^{\prime} & x_{3} & x_{3}^{\prime} \\
\neg x_{1} & - \\
x_{2} & - \\
\neg x_{2}^{\prime} & - & x_{3} \\
x_{3}^{\prime} \\
x_{2}^{\prime} & x_{3} & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & \alpha_{2} & 1 \\
x_{3}^{\prime} & - & \alpha_{2}^{\prime} \\
\alpha_{2}^{\prime} \\
\alpha_{1}^{\prime} & \alpha_{2} & \alpha_{2}^{\prime} \\
1 & \alpha_{2} & 1 \\
1 & \alpha_{2} & 1 \\
s & - \\
\alpha_{1}^{\prime} & \alpha_{2} & \alpha_{2}^{\prime} \\
\alpha_{1} & \alpha_{2} & 1
\end{array}\right],\left[\begin{array}{ccc}
x_{3}^{\prime} & \alpha_{1} & \alpha_{1}^{\prime} \\
x_{3}^{\prime} & \alpha_{1} & 1 \\
x_{3}^{\prime} & \alpha_{1} & 1 \\
x_{3}^{\prime} & \alpha_{1} & \alpha_{1}^{\prime} \\
1 & \alpha_{1} & \alpha_{1}^{\prime} \\
1 & \alpha_{1} & 1 \\
x_{3}^{\prime} & \alpha_{1} & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & \alpha_{3} & \alpha_{3}^{\prime} \\
1 & \alpha_{3} & 1 \\
\alpha_{2}^{\prime} & \alpha_{3} & \alpha_{3}^{\prime} \\
\alpha_{2}^{\prime} & \alpha_{3} & 1 \\
1 & \alpha_{3} & \alpha_{3}^{\prime} \\
\alpha_{2}^{\prime} & \alpha_{3} & 1
\end{array}\right],\left[\begin{array}{ccc}
\alpha_{3}^{\prime} & h & 1 \\
1 & h & 1 \\
\alpha_{3}^{\prime} & h & 1 \\
1 & h & 1 \\
\alpha_{3}^{\prime} & h & 1 \\
1 & h & 1 \\
\alpha_{3}^{\prime} & h & h^{\prime}
\end{array}\right],\left[\begin{array}{ccc}
h^{\prime} & f & 1 \\
1 & f & 1
\end{array}\right] .
$$

The sequence $\left(x_{1}, x_{2}, x_{3}, \alpha_{1}, \alpha_{2}, \alpha_{3}, h, f\right)$ is the only one possible generating key sequence. It follows that in the base of semiretract S there is exactly one word, namely

$$
x_{1} x_{1}^{\prime} x_{2}, x_{2}^{\prime} x_{3} x_{3}^{\prime} \alpha_{1} \alpha_{1}^{\prime} \alpha_{2} \alpha_{2}^{\prime} \alpha_{3} \alpha_{3}^{\prime} h h^{\prime} f .
$$

Assume that the formula α is satisfiable by an assignment $l_{1}=T R U E, \ldots, l_{p}=$ $T R U E$, where l_{j} for all $j=1, \ldots, m$ is a literal from the set $\left\{x_{j}, \neg x_{j}\right\}$. Let us fix the order of key codes $C_{l_{1}}, \ldots, C_{l_{p}}, C_{s}$. Note that $\operatorname{col}_{L}\left(x_{i}\right)$ for $i=1, \ldots, p$ relatively to the order $C_{l_{1}}, \ldots, C_{l_{p}}, C_{s}$ contains elements x_{i} and 1 at the positions that corresponds to the key codes $C_{l_{i}}$ and C_{s} respectively. Quite similar, $\operatorname{col}_{L}\left(\alpha_{j}\right), j=1, \ldots, m$ relatively to the order $C_{l_{1}}, \ldots, C_{l_{p}}, C_{s}$ contains elements α_{j}^{\prime} at the position that corresponds to the key code indexed by the literal that makes clause α_{j} true and contains 1 at position that corresponds to the key code C_{s}. Since elements $x_{1}^{\prime}, \ldots, x_{p}^{\prime}, \alpha_{1}^{\prime}, \ldots, \alpha_{m}^{\prime}, h^{\prime}$ are pairwise different then the only possible key sequence in semiretract generated by $C_{l_{1}}, \ldots, C_{l_{p}}, C_{s}$ is still $\left(x_{1}, \ldots, x_{p}, \alpha_{1}, \ldots, \alpha_{m}, h, f\right)$. It follows that

$$
\left(\bigcap_{i=1}^{p} C_{x_{i}}^{*} \cap C_{\neg x_{i}}^{*}\right) \cap C_{s}^{*}=\left(\bigcap_{i=1}^{p} C_{l_{i}}^{*}\right) \cap C_{s}^{*}
$$

and hence $\left(C_{x_{1}}, C_{\neg x_{1}}, \ldots, C_{x_{p}}, C_{\neg x_{p}}, C_{s}, p+1\right)$ is in $M I N-S E M$.
Let ($C_{x_{1}}, C_{\neg x_{1}}, \ldots, C_{x_{p}}, C_{\neg x_{p}}, C_{s}, p+1$) in MIN $-S E M$ and assume that

$$
C_{l_{1}}, \ldots, C_{l_{p}}, C_{l_{p+1}} \in\left\{C_{x_{1}}, C_{\neg x_{1}}, \ldots, C_{x_{p}}, C_{\neg x_{p}}, C_{s}\right\}
$$

for some $l_{1}, \ldots, l_{p+1} \in\left\{x_{1}, \neg x_{1}, \ldots, x_{p}, \neg x_{p}, s\right\}$ are such that the equality

$$
\left(\bigcap_{i=1}^{p} C_{x_{i}}^{*} \cap C_{\neg x_{i}}^{*}\right) \cap C_{s}^{*}=\bigcap_{i=1}^{p+1} C_{l_{i}}^{*}
$$

is true. Since $f \in A^{*}$ is not in the base of semiretract $\bigcap_{i=1}^{p+1} C_{l_{i}}^{*}$ (more precisely, since f is not final key), then C_{s} has to be in $\left\{C_{l_{1}}, \ldots, C_{l_{p+1}}\right\}$. Assume that $C_{s}=C_{l_{p+1}}$. Since the column $\operatorname{col}_{R}\left(x_{i}\right)$ for all $i=1, \ldots, p$ relatively to the order $C_{l_{1}}, \ldots, C_{l_{p}}, C_{s}$ has to contain x_{i}^{\prime} (x_{i} is not a final key) at some position, then $C_{x_{i}}$ or $C_{\neg x_{i}}$ is in the set $C_{l_{1}}, \ldots, C_{l_{p}}$. It follows that an assignment $l_{1}=T R U E, \ldots, l_{p}=T R U E$ is well defined. Quite similar, the column $\operatorname{col}_{R}\left(\alpha_{j}\right)$ for all $j=1, \ldots, m$ with respect to the order $C_{l_{1}}, \ldots, C_{l_{p}}, C_{s}$ has to contain α_{j}^{\prime} at some position, exactly at positions that corresponds to key codes $C_{\alpha_{j}^{1}}, C_{\alpha_{j}^{2}}$ or $C_{\alpha_{1}^{3}}$. Hence, there exist a literal $l \in\left\{l_{1}, \ldots, l_{p}\right\}$ that makes the clause $\alpha_{j} \equiv \alpha_{j}^{1} \vee \alpha_{j}^{1} \vee \alpha_{j}^{3}$ true. Hence, α is satisfiable.
Example 5.2. Formula ϕ is satisfiable by the assignment

$$
x_{1}=T R U E, x_{2}=T R U E, \neg x_{3}=F A L S E
$$

Let us consider blocks A_{k} for all $k \in K$ relatively to $C_{x_{1}}, C_{x_{2}}, C_{\neg x_{3}}, C_{s}$:

$$
\begin{aligned}
& \left.\begin{array}{cc}
x_{1} & - \\
x_{2} & - \\
\neg x_{3} & - \\
s & -
\end{array} \begin{array}{ccc}
1 & x_{1} & x_{1}^{\prime} \\
1 & x_{1} & 1 \\
1 & x_{1} & 1 \\
1 & x_{1} & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & x_{2} & 1 \\
x_{1}^{\prime} & x_{2} & x_{2}^{\prime} \\
x_{1}^{\prime} & x_{2} & 1 \\
x_{1}^{\prime} & x_{2} & 1
\end{array}\right],\left[\begin{array}{ccc}
x_{2}^{\prime} & x_{3} & 1 \\
1 & x_{3} & 1 \\
x_{2}^{\prime} & x_{3} & x_{3}^{\prime} \\
x_{2}^{\prime} & x_{3} & 1
\end{array}\right],\left[\begin{array}{ccc}
x_{3}^{\prime} & \alpha_{1} & \alpha_{1}^{\prime} \\
x_{3}^{\prime} & \alpha_{1} & 1 \\
1 & \alpha_{1} & 1 \\
x_{3}^{\prime} & \alpha_{1} & 1
\end{array}\right], \\
& \begin{array}{cc}
x_{1} & - \\
x_{2} & - \\
\neg x_{3} & - \\
s & -
\end{array}\left[\begin{array}{ccc}
1 & \alpha_{2} & 1 \\
\alpha_{1}^{\prime} & \alpha_{2} & \alpha_{2}^{\prime} \\
\alpha_{1}^{\prime} & \alpha_{2} & \alpha_{2}^{\prime} \\
\alpha_{1}^{\prime} & \alpha_{2} & 1
\end{array}\right],\left[\begin{array}{ccc}
\alpha_{2}^{\prime} & \alpha_{3} & 1 \\
1 & \alpha_{3} & 1 \\
1 & \alpha_{3} & \alpha_{3}^{\prime} \\
\alpha_{2}^{\prime} & \alpha_{3} & 1
\end{array}\right],\left[\begin{array}{ccc}
\alpha_{3}^{\prime} & h & 1 \\
\alpha_{3}^{\prime} & h & 1 \\
1 & h & 1 \\
\alpha_{3}^{\prime} & h & h^{\prime}
\end{array}\right],\left[\begin{array}{ccc}
h^{\prime} & f & 1 \\
h^{\prime} & f & 1 \\
h^{\prime} & f & 1 \\
1 & f & 1
\end{array}\right] .
\end{aligned}
$$

According to the previous considerations the key x_{1} is still the one initial key, f is still the one final key and key sequence ($x_{1}, x_{2}, x_{3}, \alpha_{1}, \alpha_{2}, \alpha_{3}, h, f$) is the one possible key sequence relatively to the order $C_{x_{1}}, C_{x_{2}}, C_{\neg x_{1}}, C_{s}$.

References

[1] W.Forys, T.Krawczyk, J.A.Anderson, Semiretracts - a counterexample and some results, Theoretical Computer Science, 307, 2003
[2] W.Forys, T.Krawczyk, The algorithmic approach to ... , 2005
[3] J.A.Anderson, The intersection of retracts of A^{*},, Theoretical Computer Science, 237, 2000
[4] J.A.Anderson, Code properties of minimal generating sets of retracts and semiretracts, SEA Bull.Math, 18, 1994

