SEMIRETRACTS - ALGORITHMIC PROBLEMS

TOMASZ KRAWCZYK

Jagiellonian University, Institute of Computer Science Nawojki 11, 30-072 Krakow, Poland krawczyk@ii.uj.edu.pl

KBN grant no 3 T11C 010 27 $\,$

1. INTRODUCTION

Semiretracts of free monoids were investigated first by Jim Anderson [1] and then were the subject of the papers - see references [1-6, 10-12, 14-15]. In the paper [1] J.A.Anderson presented a theorem that characterizes any semiretract Sby means of two retracts R_{α}, R_{ω} . Namely, he showed that for any semiretract Sthere exist retracts R_{α} and R_{ω} such that $S = R_{\alpha} \cap R_{\omega}$. In the paper [2] the counterexample to this characteristic was given. In the sequel, in this paper we introduce the notion of dimension of S (written dim(S)); namely, dim(S) = k iff k is the minimal number such that $S = \bigcap_{i=1}^{k} R_i$ for some retracts $R_1, ..., R_k$. We present a polynomial time algorithm that test if dim(S) = k. On the other hand, we show that a little modification of this problem is NP-complete.

2. Basic Notions And Definitions

We assume the reader is familiar with the basic notions and concepts from the theories of semigroups and the theories of computation.

Let A be any finite set and let A^* denote a free monoid generated by A. The length of a word $w \in A^*$, in symbols |w|, is defined to be the number of letters occuring in w (the length of the empty word 1 equals 0).

A retraction $r: A^* \longrightarrow A^*$ is a morphism for which $r \circ r = r$. A retract R of A^* is the image of A^* by a retraction. A semiretract S of A^* is the intersection of a family of retracts of A^* . A dimension of semiretract S - written dim(S) - is equal k iff k is the minimal number such that $S = \bigcap_{i=1}^k R_i$ for some retracts R_1, \ldots, R_m . The following theorem is due to J.A.Anderson - see [3].

Theorem 2.1. Dim(S) is finite for any semiretract S.

A word $w \in A^*$ is called a key-word if there is at least one letter in A that occurs exactly once in w and the letter is called a key of w. A set $C \subset A^*$ of key-words is called a key-code if there exists an injection $key : C \longrightarrow A$ such that

- (1) for any $w \in C$, key(w) is a key of w,
- (2) the letter key(w) occurs in no word of C other than w itself.

Note that any key-code is in fact a code and that for a key-code C there is possible to exist more then one injection $key : C \longrightarrow A$. Given a key-code C and a fixed mapping key the set of all keys of words in C is denoted by key(C).

The following characterization of retracts is due to T. Head [?].

TOMASZ KRAWCZYK

Theorem 2.2. $R \subset A^*$ is a retract of A^* if and only if $R = C^*$ where C is a key-code.

Because we shall be dealing with the complexity problems let us define the set of all inputs (instances) \mathcal{I} ; namely a sequence $(C_1, ..., C_k, l)$ is in \mathcal{I} iff $C_1, ..., C_n$ are key codes and l is a positive integer. Hence, with any $(C_1, ..., C_n, l) \in \mathcal{I}$ we can associate a semiretract $S = \bigcap_{i=1}^n C_i^*$. The first decision problem (given as a languge) $DIM - SEM \subset \mathcal{I}$ related to the dimension of semiretract can be defined as follows: $(C_1, ..., C_n, l)$ is in DIM - SEM iff there exist l key codes $D_1, ..., D_l$ such that $\bigcap_{i=1}^n C_i^* = \bigcap_{i=1}^l D^i$. We also will consider the decision problem $MIN - SEM \subset \mathcal{I}$; an instance $(C_1, ..., C_n, l)$ is in MIN - SEM iff there exists key codes $C_{i_1}, ..., C_{i_l} \in \{C_1, ..., C_n\}$ for some $i_1, ..., i_l \in \{1, ..., n\}$ such that $\bigcap_{i=1}^n C_i^* = \bigcap_{j=1}^l C_{i_j}^*$.

The main thesis of this paper is as follows: DIM - SEM is in P while MIN - SEM is NP-complete.

3. Preliminary results

Let $(C_1, ..., C_n, k) \in \mathcal{I}$. In [2] W. Forys and T. Krawczyk proved the theorem that allows us to narrow down the research on semiretracts to the case when all considered retracts have the same, common key-set K.

Theorem 3.1. Let $S = \bigcap_{i=1}^{n} C_i^*$ be a semiretract given by retracts C_i^* with keycodes $C_i \subset A^*$ for i = 1, ..., n. There exist key-codes $D_i \subset A^*$ for i = 1, ..., n such that

- (1) $S \subset D_i^* \subset C_i^*$ for all i = 1, ..., n (it means $S = \bigcap_{i=1}^n C_i^*$)
- (2) $key(D_1) = key(D_2) = \dots = key(D_n).$

Hence any semiretract S is an intersection of a family of retracts generated by key codes having the common set of keys.

Let $S = \bigcap_{i=1}^{n} D_i^*$ and let $D_1, ..., D_n$ be key codes with the same set K. In the rest of the paper we assume that any $k \in K$ occurs in some word from the base of semiretract S.

Let us fix the order of retracts - $D_1^*, ..., D_n^*$. For any $k \in K$ there exist words $w_1 \in D_1, ..., w_n \in D_n$ all with the key k. We write this fact in a matrix form (abbreviated n-lines):

$$A(k) = \begin{bmatrix} u_1 & k & v_1 \\ \vdots & \vdots & \vdots \\ u_i & k & v_i \\ \vdots & \vdots & \vdots \\ u_n & k & v_n \end{bmatrix}$$

Hence, in the first column of A(k) there are prefixes u_i of w_i and in the third column there are sufixes v_i of w_i such that $w_i = u_i k v_i$ for all i = 1, ..., n. The matrix A(k) is associated with the key $k \in K$. We denote in the sequel by $col_L(k)$ and by $col_R(k)$ the first (left) and the third column of A_k . Since k occurs in some word from the base of semiretract S, then u_i is a suffix of u_j or u_j is a suffix of u_i for all i, j = 1, ..., n. For the same reason w_i is a prefix of w_j or w_j is a prefix of w_i for all i, j = 1, ..., n. If it is necessary we underline that A(k), $col_L(k)$, $col_R(k)$ were defined relatively to the order $D_1, ..., D_n$.

3

Definition 3.2. We say that $k \in K$ is initial key if $col_L(k) = \begin{bmatrix} u \\ \vdots \\ u \end{bmatrix}$ for some

 $u \in A^*$. We denote the word u by left(k) as it occurs on the left site of the letter k. We say that $k \in K$ is final if $col_R(k) = \begin{bmatrix} w \\ \vdots \\ w \end{bmatrix}$ for some $w \in A^*$. We denote the word w by right(k) as it occurs on the right site of k.

The set of all initial keys we denote by L_{init} . The set of all final keys we denote by R_{final} .

Definition 3.3. It is said that columns $U = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$ and $V = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ form an

n-factorization of the word $w \in A^+$ and it is written $U \leftrightarrow_n V$ iff $u_i v_i = w$ for i = 1, ..., n and there exist i, j such that $u_i \neq u_j$. Let $u \in A^*$ be the longest common prefix of $u_1, ..., u_n$ and let v be the longest common suffix of $v_1, ..., v_n$. Then there exist $u'_1, v'_1, ..., u'_n, v'_n \in A^*$ such that $u_i = uu'_i$ and $v_i = v'_i v$ for all i = 1, ..., n. Then $\begin{bmatrix} u'_1 \\ u'_1 \end{bmatrix}$

exist $u'_1, v'_1, ..., u'_n, v'_n \in A^*$ such that $u_i = uu'_i$ and $v_i = v'_i v$ for all i = 1, ..., n. Then the columns $U' = \begin{bmatrix} u'_1 \\ \vdots \\ u'_n \end{bmatrix}$ and $V' = \begin{bmatrix} v'_1 \\ \vdots \\ v'_n \end{bmatrix}$ form an *n*-factorization of some word

 $w^{'} \in A^{+}$. The *n*-factorization $U^{'} \leftrightarrow_{n} V^{'}$ is called the base and the word $w^{'}$ is called the source of the *n*-factorization $U \leftrightarrow_{n} V$.

Definition 3.4. Let $k_1, k_2 \in K$. We say that k_2 follows k_1 iff $col_R(k_1) \leftrightarrow col_L(k_2)$ constitutes n-factorization of some word $w \in A^+$. The word w is denoted by $bk(k_1, k_2)$ as it occurs between keys k_1 and k_2 .

The above introduced notations allows us to give a simple lemma that presents a method for obtaining any word in the base of semiretract $S = \bigcap_{i=1}^{n} D_i^*$.

Lemma 3.5. Let $k_1, ..., k_p \in K$ be a sequence of keys of the semiretract S such that (1) k_1 is initial key, (2) k_p is final key and k_{i+1} follows k_i for i = 1, ..., p - 1. Then the word

$$w = left(k_1)k_1bk(k_1, k_2)k_2...k_{p-1}bk(k_{p-1}, k_p)k_pright(k_p)$$

is in the base (code) C of semiretract S. Moreover, for any word w in C there exist keys $k_1, ..., k_p \in K$ such that the above is true.

Any sequence of keys $k_1, ..., k_p \in K$ fulfilling assumptions (1)-(3) is called a generating key sequence.

Remark 3.6. Finding a word from the base of the semiretract is equivalent to finding a sequence of keys which fulfils the conditions from the above theorem.

Example 3.7. Assume that E_1 , E_2 and E_3 are key codes with the same key set $K = \{k_1, k_2, k_3, k_4, k_5\}$. $E_1 = \{abk_1aba, k_2aa, bk_3b, bk_4baba, k_5aa\},$

 $E_2 = \{abk_1ab, ak_2a, abk_3b, abk_4bab, ak_5a\}$

 $E_3 = \{abk_1a, bak_2, aabk_3b, babk_4ba\}.$

Hence $A(k_1), A(k_2), A(k_3), A(k_4)$ and $A(k_5)$ are equal respectively

$\left[\begin{array}{c}a\\a\\a\end{array}\right]$	Ь Ь Ь	$egin{array}{c} k_1 \ k_1 \ k_1 \ k_1 \end{array}$	$a \\ a \\ a$	b b		,	b	a a	$egin{array}{c} k_2 \ k_2 \ k_2 \ k_2 \end{array}$	a a	a],	$\left[\begin{array}{c} a \end{array} \right]$	a a	$egin{array}{c} k_3\ k_3\ k_3\ k_3 \end{array}$	b b b],
		$a \\ a$	b b b	$egin{array}{c} k_4 \ k_4 \ k_4 \end{array}$	b b b	$a \\ a \\ a$	b b	a _	and	d	a	a a	$egin{array}{c} k_5 \ k_5 \ k_5 \end{array}$	a a			

For example:

$$col_L(k_1) = \begin{bmatrix} a & b \\ a & b \\ a & b \end{bmatrix}, \ col_R(k_1) = \begin{bmatrix} a & b & a \\ a & b \\ a & - \end{bmatrix}, \ col_L(k_2) = \begin{bmatrix} a \\ b & a \\ b & a \end{bmatrix}.$$

Hence k_1 is initial key and k_3 is final key. The key k_2 follows k_1 , since

 $col_R(k_1) \leftrightarrow_3 col_L(k_2)$ form 3-factorization of the word *aba*. The 3-factorization

 $\begin{bmatrix} b & a \\ b & \\ \end{bmatrix} \leftrightarrow_3 \begin{bmatrix} a \\ b & a \end{bmatrix}$ is the base and the word ba is the source of 3-factorization

 $col_R(k_1) \leftrightarrow col_L(k_2).$

Since k_1 is initial key, k_2 follows k_1 , k_3 follows k_2 and k_3 is final, then the sequence k_1, k_2, k_3 is the generating key sequence. Hence the word

 $left(k_1)k_1bk(k_1,k_2)k_2bk(k_2,k_3)k_3right(k_3) = abk_1abak_2aak_3b$

is in the base of semiretract $E_1^* \cap E_2^* \cap E_3^*$.

4. The problem DIM - SEM is in P.

Suppose now that $(C_1, ..., C_n, l) \in \mathcal{I}$. By the previous paragraph there exists a sequence of key codes $D_1, ..., D_n$ with the same set of keys K such that $S = \bigcap_{i=1}^n D_i^*$.

Let $k_1, k_2 \in K$ be any keys such that k_2 follows k_1 . Assume that n-factorization $U \leftrightarrow_n V$ is the base of $col_R(k_1) \leftrightarrow_n col_L(k_2)$. If k_3 and k_4 are such that k_4 follows k_3 and the base of *n*-factorization $col_R(k_3) \leftrightarrow_n col_L(k_4)$ is equal $U \leftrightarrow_n V$, then k_4 follows k_1 and k_2 follows k_3 as well and the bases of n-factorizations $col_R(k_1) \leftrightarrow_n col_R(k_4)$ and $col_L(k_3) \leftrightarrow_n col_R(k_2)$ are equal $U \leftrightarrow_n V$. Hence, with the pair $U \leftrightarrow_n V$ we can associate two sets $R, L \subset K$ such that for all $k \in R, \overline{k} \in L$ the key k follows k and the base of n-factorization $col_R(k) \leftrightarrow_n col_L(k)$ is equal $U \leftrightarrow_n V.$

Let us denote by $\mathcal{B}(D_1,...,D_n)$ the set of all *n*-factorizations that occur as the base of n-factorization $col_R(k) \leftrightarrow col_L(\overline{k})$ for some $k, \overline{k} \in K$ such that \overline{k} follows k. It may happen that the set R or L associated with an element $U \leftrightarrow_n$ $V \in \mathcal{B}(D_1, ..., D_n)$ consists of exactly one element. Suppose that $L = \{l\}$ and $R = \{r_1, ..., r_m\}$ for some $l, r_1, ..., r_m \in K$. Note that in any generating key sequence the key l has to occur after any r_i whenever r_i occurs in a generating key sequence. Let us define for i = 1, ..., n

$$D_{i}^{'} = (D_{i} \setminus \{v_{i}(l), v_{i}(r_{1}), ..., v_{i}(r_{m})\}) \cup \{v_{i}(r_{1})v_{i}(l), ..., v_{i}(r_{m})v_{i}(l)\},\$$

where $v_i(k)$ for any $k \in K$ denotes key word in D_i with k as the key letter. Of course, for i = 1, ..., n the set D'_i is a key code (fix the letter r_j as the key of word $v_i(l)v_i(r_j)$ for j = 1, ..., m). By the previous considerations $S = \bigcap_{i=1}^n D'_i$. Note

4

that the number of elements in $\mathcal{B}(D'_1, ..., D'_n)$ relatively to $\mathcal{B}(D_1, ..., D_n)$ diminish to 1. We could repeat the following procedure in the case R consists of exactly one element. Hence, we can state:

Lemma 4.1. Let $S = \bigcap_{i=1}^{n} D_i^*$ and let $D_1, ..., D_n$ be key codes with the same key set K. Then there exist key codes $E_1, ..., E_n$ such that

- (1) $S \subset E_i^* \subset D_i^*$ for i = 1, ..., n (it means $S = \bigcap_{i=1}^n E_i^*$)
- (2) $key(E_1) = key(E_2) = ... = key(E_n)$
- (3) if $U \leftrightarrow_n V \in \mathcal{B}(E_1, ..., E_n)$ then the sets R, L associated with $U \leftrightarrow_n V$ have at least two members.

Suppose now that $S = \bigcap_{i=1}^{n} E_i^*$ and the sequence $E_1, ..., E_n$ fulfills the properties listed in the previous lemma.

Definition 4.2. Let $U \leftrightarrow_n V \in \mathcal{B}(C_1, ..., C_n)$ be an *n*-factorization of the word $w_1 \in A^+$. Let $L, R \subset K$ be associated with $U \leftrightarrow_n V$. We say that $w_2 \in A^+$ separates R and L iff w_2 is the word of the maximal length containing w_1 and the equality

$$\{kbk(k,\overline{k})\overline{k} \mid k \in R, \overline{k} \in L\} = \{kright(k)w_2 left(\overline{k})\overline{k} \mid k \in R, \overline{k} \in L\}$$

is true for some words right(k), $left(\overline{k}) \in A^*$. For any $k \in K$ the word left(k)kright(k) is now defined and we denote this word by root(k). Note that the word w_2 is properly defined. It may happened that $w_1 = w_2$ of course.

Let us fix the order of all members of the set $\mathcal{B}(E_1, ..., E_n) - U_1 \leftrightarrow_n V_1, ..., U_m \leftrightarrow_n V_n$. Assume that sets $R_j, L_j \subset K$ are associated with the base $U_j \leftrightarrow_n V_j$ and denote the separating word for the pair R_j, L_j by sep_j . Note that the families $\{L_{init}, L_1, ..., L_m\}$ and $\{R_{final}, R_1, ..., R_m\}$ constitute the partitions of the set K. Note that by the previous lemma every set of those families except L_{init} or R_{final} has to contain at least 2 members.

Example 4.3.

$$\mathcal{B}(E_1, E_2, E_3) = \left\{ \begin{bmatrix} b & a \\ b & \\ & \end{bmatrix} \leftrightarrow_3 \begin{bmatrix} a \\ b & a \end{bmatrix}, \begin{bmatrix} a & a \\ a & \\ & \end{bmatrix} \leftrightarrow_3 \begin{bmatrix} a \\ a & \\ & a \end{bmatrix} \right\}.$$

 $L_{init} = \{k_1\}, L_1 = \{k_2, k_4\}, L_2 = \{k_3, k_5\}.$ $R_{final} = \{k_3\}, R_1 = \{k_1, k_4\}, R_2 = \{k_2, k_5\}.$

The families $\{L_{init}, L_1, L_2\}$ and $\{R_{final}, R_1, R_2\}$, where R_1, L_1 and R_2, L_2 are associated respectively with the first and the second element of $\mathcal{B}(E_1, ..., E_n)$, form the partitions of the set K.

The word $aba \in A^+$ separates R_1 and L_1 . The word aa separates R_2 and L_2 . The roots of k_1, k_2, k_3, k_4 and k_5 are equal respectively $bak_1, k_2, k_3b, bk_4b, k_5$.

Now we are ready to give the basic for our considerations lemma.

Lemma 4.4. Let $S = \bigcap_{i=1}^{n} E_i^*$ be a semiretract such that the sequence of key codes $E_1, ..., E_n$ with a common key set K fulfills the conditions given in Lemma 4.1. Then, for any key code F with key set \overline{K} such that $S \subset F^*$ there exists a key code G with K as the key set such that

(1) $S \subset G^* \subset F^*$

TOMASZ KRAWCZYK

- (2) Let $k \in K$. Assume that if k is not final, then $k \in R_s$ for some $s \in \{1, ..., m\}$ and if k is not initial, then $k \in L_t$ for some $t \in \{1, ..., m\}$. If $v(k) \in G$ is the key word with $k \in K$ as the key letter, then root(k) is a subword of v(k). Moreover, if
 - (a) k is initial and final key, then v(k) = root(k),
 - (b) k is initial and not final key, then v(k) is a subword of $root(k)sep_t$,
 - (c) k is initial and not final key, then v(k) is a subword of $sep_sroot(k)$,
 - (d) k is not final and not initial key, then v is a subword of $sep_sroot(k)sep_t$.

Proof. Let us denote by $w(\overline{k})$ the key word in F with $\overline{k} \in \overline{K}$ as the key letter. For any $k \in K$ let $\overline{k_1}, ..., \overline{k_p} \in \overline{K}$ be the sequence of all keys that occur in root(k). We denote the word $w(\overline{k_1})...w(\overline{k_p}) \in F^*$ by $root^F(k)$. Note that $root^F(k)$ is uniquely determined.

For any separating word sep_j let $\overline{k_1}, ..., \overline{k_p}$ be the sequence of all keys in \overline{K} that occur in sep_j for j = 1, ..., m. We denote the word $w(\overline{k_1})...w(\overline{k_p}) \in F^*$ by sep_j^F . Note that sep_i^F is uniquely determined.

Let w be a word in the base of semiretract S and let $k_1, ..., k_p \in K$ be the generating key sequence for w. Let us consider the double factorization of the word w. Assume that for any i = 1, ..., n the number $j_i \in \{1, ..., m\}$ is such that $U_{j_i} \leftrightarrow_n V_{j_i}$ is the base of *n*-factorization $col_R(k_i) \leftrightarrow_n col_L(k_{i+1})$. By Lemma 3.5 and by Definition 4.2.

 $w = root(k_1)sep_{j_1}root(k_2)sep_{j_2}....sep_{j_{p-1}}root(k_p).$

On the other hand, by $S \subset F^*$

$$w = root^{F}(k_{1})sep_{j_{1}}^{F}root^{F}(k_{2})sep_{j_{2}}^{F}....sep_{j_{p-1}}^{F}root^{F}(k_{p}).$$

Since any set $R_1, L_1, \ldots, R_m, L_m$ has at least 2 elements, then the word $sep_{j_i}^F$ has to be a subword of sep_{j_i} . Hence the word $root^F(k_i)$ contains $root(k_i)$ as a subword. Since any letter $k \in K$ occurs in some word from the base of S, then the word root(k) is a subword of $root^F(k)$ and for any $j \in \{1, ..., m\}$ the word sep_j contains sep_j^F as a subword.

Let $k \in K$. If k is not final, then assume that $k \in R_s$ for some $s \in \{1, ..., m\}$. If k is not initial, then assume that $k \in L_t$ for some $t \in \{1, ..., m\}$. For any $k \in K$ let v(k) (with k as the key letter) denote the word

- $root^F(k)$ if k is initial and final,

- root^F(k)sep^F_t if k is initial and not final,
 sep^F_s root^D(k) if k is final and not initial,
 sep^F_s root^F(k)sep^F_t if k is not initial and not final.

Then the key code

$$G = \{v(k) \mid k \in K\}$$

makes our theorem true.

Definition 4.5. Let $w_1, ..., w_m \in A^+$ be a sequence of words and let $U(w_j) \leftrightarrow$ $V(w_j)$ be an *l*-factorization of w_j for j = 1, ..., m. We say that the sequence $U(w_1) \leftrightarrow_l V(w_1), ..., U(w_m) \leftrightarrow_l V(w_m)$ constitute *l*-factorization of the sequence $w_1, ..., w_m$ if and only if the columns $U(w_i), V(w_j)$ for i, j = 1, ..., m constitute l-factorization only if i = j.

Hence, the sequence $U_1 \leftrightarrow_n V_1, ..., U_m \leftrightarrow_n V_m$ forms *n*-factorization of the sequence $w_1, ..., w_m \in A^+$, where w_i is a subword of sep_i for i = 1, ..., m. As a consequence, there exists *n*-factorization of the sequence $sep_1, ..., sep_m$ (it is obtained by modifying a little bit the columns $U_1, V_1, ..., U_m, V_m$).

Suppose now that $dim(S) \leq l$. By definition $S = \bigcap_{i=1}^{l} F_{i}^{*}$ for some key codes $F_{1}, ..., F_{l}$. Since $S \subset F_{i}^{*}$, then by the previous lemma there exists key code G_{i} with the key set K such that $S \subset G_{i}^{*} \subset F_{i}^{*}$ for i = 1, ..., l. The form of any key word in G_{i} and the equality $S = \bigcap_{i=1}^{l} G_{i}^{*}$ imply, that there exist l-factorization of the sequence $sep_{1}, ..., sep_{m}$.

Suppose now that a sequence $X^1 \leftrightarrow_l Y^1, ..., X^m \leftrightarrow_l Y^m$ forms an *l*-factorization of the sequence $sep_1, ..., sep_m$. Assume that $k \in K$ is not initial and not final key. Then $k \in R_s$ and $k \in L_t$ for some $s, t \in \{1, ..., m\}$. Let us define *l*-key words with k as the key letters as follows (we use the matrix form):

$$A(k) = \begin{bmatrix} X_1^t left(k) & k & right(k)Y_1^s \\ \vdots & \vdots & \vdots \\ X_i^t left(k) & k & right(k)Y_i^s \\ \vdots & \vdots & \vdots \\ X_l^t left(k) & k & right(k)Y_l^s \end{bmatrix}$$

where X_i^t and Y_i^s for i = 1, ..., l denote the entries in the *i*-th rows of columns X^t and Y^s respectively. In the case *k* is initial the left column of A(k) consist entirely of left(k) and in the case *k* is final the right column of A(k) consist entirely of right(k). It is not hard to verify that the intersection of *l* retracts with *l* key codes defined above is equal with *S*. As a consequence we have the following statement true.

Theorem 4.6. Let $S = \bigcap_{i=1}^{n} E_i$, where the sequence of key codes $E_1, ..., E_n$ fulfills the conditions given in Lemma 4.5. Then, $\dim(S) \leq l$ iff there exist l-factorization of the sequence $sep_1, ..., sep_m$.

To verify if there exist an l-factorization of the sequence $sep_1, ..., sep_m$ let us consider a network D = (V, A) with a capacity function $c : A \to \mathbb{N}$. Let $V = \{s, t\} \cup V_1 \cup V_2$ be the set of all vertices in a digraph D = (V, A), where $s, t \in V$ are respectively the source and the sink of the network,

$$V_1 = \{sep_j | j \in \{1, ..., m\}\}$$

and

$$V_2 = \{w \mid w \text{ is a subword of some } sep_j, \ j \in \{1, ..., m\}\}.$$

Let

$$A = \{s, V_1\} \cup E \cup V_2 \times \{t\},\$$

where $E \subset V_1 \times V_2$ is the set of edges defined as follows: $(v_1, v_2) \subset V_1 \times V_2$ is in E iff v_2 is a subword of v_1 . Finally, we define the capacity function by the following rules:

- $c(s, v_1) = x$ for $(s, v_1) \in \{s\} \times V_1$ if the word v_1 occurs exactly x times in the sequence sep_1, \dots, sep_m ,
- $c(v_1, v_2) = \infty$ for $(v_1, v_2) \in E$,

TOMASZ KRAWCZYK

• $c(v_2,t) = max(m, l(v_n))$ for $(v_2,t) \in \{v_2\} \times V_2$, where $l(v_2)$ is the number of all different l-factorization of the word v_2 with v_2 as the source. Since such an l-factorization of v_2 is fully determined by the left column of l-factorization, then

$$l(v_2) = \sum_{k_1, k_2 \ge 1, k_1 + k_2 \le l} \binom{l}{k_1} \binom{l-k_1}{k_2} (|v_2|-1)^{l-(k_1+k_2)},$$

where the term $\binom{l}{k_1}\binom{l-k_1}{k_2}(|v_2|-1)^{l-(k_1+k_2)}$ denotes the number of columns with exactly:

- $-k_1$ rows filled up with 1,
- $-k_2$ rows filled up with v_2 ,
- $-l (k_1 + k_2)$ rows filled up with nonempty, proper prefix of v_2 .

Lemma 4.7. There exist an l-factorization of the sequence $sep_1, ..., sep_m$ iff the maximal flow of the network D = (V, A) with the capacity function $c : E \to \mathcal{N}$ is equal m.

Proof. Let $U_1 \leftrightarrow_l V_1, ..., U_m \leftrightarrow_l V_m$ be an *l*-factorization of the sequence $sep_1, ..., sep_m$ with the sources respectively $w_1, ..., w_n$. Let us consider the function $f : A \to \mathbb{N}$ defined as follows:

- $f(s, v_1) = c(s, v_1)$ for $(s, v_1) \in \{s\} \times V_1$,
- $f(v_1, v_2) = x$ for $(v_1, v_2) \in E$ if the pair (v_1, v_2) occurs x time in the sequence $(sep_1, w_1), ..., (sep_m, w_m),$
- $f(v_2,t) = y$ for $(v_2,t) \in V_2 \times \{t\}$ if the word v_2 occurs in the sequence $w_1, ..., w_m$ exactly y times.

We can easily check that f satisfy the conservation and feasibility rules and hence f is a flow function with the flow value m. By the max-flow min-cut theorem for the cut $(\{s\}, V \setminus \{s\})$ with the capacity m we conclude that f is the maximal flow in the network.

Suppose now that $f: A \to \mathbb{N}$ is a maximal flow function in the network and the flow value is m. Let $v_1 \in V_1$. Since the cut $(\{s\}, V \setminus \{s\})$ has the capacity m, then $f(s, v_1) = c(s, v_1) = x$ for some $x \in \mathbb{N}$. Thus, the word v_1 occurs on the list sep_1, \ldots, sep_m exactly x times. Assume, that $j_1, \ldots, j_x \in \{1, \ldots, m\}$ are such that $sep_{j_i} = v_1$ for $i = 1, \ldots, x$. Hence, by the conservation rule for the vertex v_1 there exists a list $L(v_1) = w_{j_1}, \ldots, w_{j_k}$ such that w_{j_i} is the subword of $v_1 = sep_{j_i}$ and any word $v_2 \in L(v_1)$ occurs on the list $L(v_1)$ exactly $f(v_1, v_2)$ times. Hence, with any separating word sep_{j_i} we can associate a subword w_{j_i} for all $i = 1, \ldots, x$. Repeating this step for any vertex $v_1 \in V_1$ we obtain a sequence w_1, \ldots, w_m such that w_i is associated with sep_i for $i = 1, \ldots, m$.

Let us consider any w_i for i = 1, ..., m and assume that w_i occurs exactly y $(y \in \mathbb{N})$ times on the list $w_1, ..., w_m$. Suppose that $w_i = w_{k_1} = ... = w_{k_y}$ for some $k_1, ..., k_y \in \{1, ..., m\}$. The conservation rule for the vertex $w_i \in V_2$ and the feasibility rule for the edge (w_i, t) asserts that we can find y different l-factorizations of the word w_i ; let us denote them by $U_{k_1} \leftrightarrow_l V_{k_1}, ..., U_{k_y} \leftrightarrow_l V_{k_y}$. Repeating this step for any $w_i \in \{w_1, ..., w_m\}$ we obtain a sequence of l-factorizations $U_1 \leftrightarrow_l V_1, ..., U_m \leftrightarrow_l V_m$, where $U_j \leftrightarrow_l V_j$ is an l-factorization of w_j for j = 1, ..., m. Note that if $U^1 \leftrightarrow_l V^1$ and $U^2 \leftrightarrow_l V^2$ form l-factorizations with different source words, then U^1, V^2 and U^2, V^1 as well does not form l-factorization. It follows that the sequence $U_1 \leftrightarrow_l V_1, ..., U_m \leftrightarrow_l V_m$ forms the l-factorization of the sequence

8

 $w_1, ..., w_m$. Thus, sine w_i is a subword of sep_i for i = 1, ..., m, then there exists an l-factorization of the sequence $sep_1, ..., sep_m$.

Assume that $(C_1, ..., C_m, l) \in \mathcal{I}$. Then $S = \bigcap_{i=1}^n C_i^*$. Then we compute the sequence of key codes $E_1, ..., E_n$ that satisfy the properties listed in the Lemma 4.1. Next, we produce the sequence $sep_1, ..., sep_m$ of all separating word. We refer to [2] to show that the list $sep_1, ..., sep_m$ can be computed in polynomial time. After all, for the sequence $sep_1, ..., sep_m$ we construct the network as presented above. The instance $(C_1, ..., C_m, l) \in DIM - SEM$ iff the maximal flow in the network is equal m. Since MAX - FLOW is in P, then DIM - SEM is also in P.

5. Problem MIN - SEM is NP-complete.

The problem MIN - SEM is in NP. For any $(C_1, ..., C_n, l) \in \mathcal{I}$ a nondeterministic Turing machine indicates l key codes $C_{i_1}, ..., C_{i_l} \in \{C_1, ..., C_n\}$ for some $i_1, ..., i_l \in \{1, ..., m\}$. Next, it constructs minimal, deterministic automatons A_1, A_2 that recognize the base of semiretracts $\bigcap_{i=1}^n C_i^*$ and $\bigcap_{j=1}^l C_{i_j}^*$ respectively. Finally, it tests if $A_1 = A_2$. In [2] the polynomial time algorithm for constructing minimal, deterministic automatons that recognizes the base of semiretract is presented. Finally, we can test if $A_1 = A_2$ in polynomial time.

We prove that $3 - SAT \leq_P MIN - RET$. Let $\{x_1, ..., x_p\}$ be the set of all variables that occur in the formula $\alpha = \bigwedge_{j=1}^m \alpha_j$, where $\alpha_j \equiv \alpha_j^1 \lor \alpha_j^2 \lor \alpha_j^3$, j = 1, ..., m. The transformation \mathcal{T} , for given formula α , produces 2p key codes $C_{x_1}, C_{\neg x_1}, ..., C_{x_p}, C_{\neg x_p}$ and the special key code denoted by C_s . We will prove that α is satisfiable iff $(C_{x_1}, C_{\neg x_1}, ..., C_{x_p}, C_{\neg x_p}, C_{\neg x_p}, C_{\neg x_p}, C_{\neg x_p}, C_s, p+1)$ is in MIN - SEM. Let us describe the transformation $\mathcal{T}(\alpha)$.

All key codes $C_{x_1}, C_{\neg x_1}, ..., C_{x_p}, C_{\neg x_p}$ have the same key set

$$K = \{f, h, x_1, ..., x_p, \alpha_1, ..., \alpha_m\}$$

and are defined over the alphabet

$$A = K \cup \{h', x_1', ..., x_p', \alpha_1', ..., \alpha_m'\}.$$

Let us fix the order $C_{x_1}, C_{\neg x_1}, ..., C_{x_p}, C_{\neg x_p}, C_s$ of all key codes. We define any key code by giving all columns $col_L(k), col_R(k)$ for any $k \in K$ with respect to the order $C_{x_1}, C_{\neg x_1}, ..., C_{x_p}, C_{\neg x_p}, C_s$.

For any key x_i , i = 1, ..., p associated with the variable x_i , we define $col_R(x_i)$ putting x'_i at the positions that correspond to key codes C_{x_i} and $C_{\neg x_i}$ and putting 1 at the other positions. For any key α_j , j = 1, ..., m associated with the clause α_j we define $col_R(\alpha_j)$ putting α'_j at the positions that correspond to the key codes $C_{\alpha_j^1}$, $C_{\alpha_j^2}$ and $C_{\alpha_j^3}$ and putting 1 at the other positions. For the key $h \in K$ we define $col_R(h)$ putting h' at the position that correspond to the key code C_s and putting 1 at the other positions. To make x_1 the one, initial key and f the one, final key we define $col_L(x_1)$ and $col_R(f)$ putting 1 on any positions. The columns $col_L(x_2), ..., col_L(x_p), col_L(\alpha_1), ..., col_R(\alpha_m), col_L(h)$ and $col_L(f)$ are defined such that the sequence of keys

$$(x_1, x_2, ..., x_p, \alpha_1, \alpha_2, ..., \alpha_m, h, f)$$

is the only one possible generating key sequence. By Lemma 3.5, the base of semiretracts consists of exactly one word, namely

$$x_1x_1x_2x_2\dots x_nx_n\alpha_1\alpha_1\alpha_2\alpha_2\dots\alpha_m\alpha_mhh'f.$$

Example 5.1. Let

$$\phi \equiv (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3).$$

The set of all variables is equal to $\{x_1, x_2, x_3\}$. Hence we define key codes $C_{x_1}, C_{\neg x_1}, C_{x_2}, C_{\neg x_2}, C_{x_3}, C_{\neg x_3}, C_s$ with the same set of keys $K = \{f, h, x_1, x_2, x_3, \alpha_1, \alpha_2, \alpha_3\}$ over the alphabet $K \cup \{h', y_1, y_2, y_3, a_1, a_2, a_3\}$. Key codes $C_{x_1}, C_{\neg x_1}, C_{x_2}, C_{\neg x_2}, C_{x_3}, C_{\neg x_3}, C_s$ are presented in the matrix form:

		,	F	F / 7	F / /]
x_1	_	$\begin{bmatrix} 1 & x_1 & x'_1 \end{bmatrix}$	$1 x_2 1$	$x_{2} x_{3} 1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\neg x_1$	—	$1 x_1 x'_1$	$1 x_2 1$	x'_{2} x_{3} 1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
x_2	—	$1 x_1 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1 x_3 1$	$x'_{3} \alpha_{1} 1$
$\neg x_2$	_	$1 x_1 1$,	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} 1 & x_3 & 1 \\ & & \end{vmatrix}$,	$x'_{3} \alpha_{1} \alpha'_{1}$
x_3	_	$1 x_1 1$	$x_{1}^{'}$ x_{2} 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1 \alpha_1 \alpha'_1$
$\neg x_3$	—	$1 x_1 1$	$x_{1}^{'}$ x_{2} 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1 \alpha_1 1$
s	_	$\begin{bmatrix} 1 & x_1 & 1 \end{bmatrix}$	$x_{1}^{'}$ x_{2} 1	x'_{2} x_{3} 1	$x'_{3} \alpha_{1} 1$
x_1	_	$\begin{bmatrix} 1 & \alpha_2 & 1 \end{bmatrix}$	$\begin{bmatrix} \alpha'_2 & \alpha_3 & 1 \end{bmatrix}$	$\begin{bmatrix} \alpha'_3 & h & 1 \end{bmatrix}$	$\begin{bmatrix} h' & f & 1 \end{bmatrix}$
$\neg x_1$	_	α_1^{\prime} α_2 α_2^{\prime}	$1 \alpha_3 \alpha'_3$	$\begin{vmatrix} 1 & h & 1 \end{vmatrix}$	h^{\prime} f 1
x_2	_	$\alpha_1^{\vec{r}} \alpha_2 \alpha_2^{\vec{r}}$	$1 \alpha_3 1$	$\alpha'_3 h 1$	h^{\prime} f 1
$\neg x_2$	_	$1 \alpha_2 1$, $\alpha_2' \alpha_3 \alpha_3'$	$\left \begin{array}{ccc} & & & \\ & & & \\ & & & \\ \end{array} \right \left \begin{array}{ccc} & & & \\ & & & \\ & & & \\ \end{array} \right \left \begin{array}{ccc} & & & \\ & & & \\ & & & \\ \end{array} \right $	$h' f 1 \cdot$
x_3	_	$1 \alpha_2 1$	$\alpha'_2 \alpha_3 1$	$\alpha'_3 h 1$	h' f 1
$\neg x_3$	_	α_1^{\prime} α_2 α_2^{\prime}	$1 \alpha_3 \alpha'_3$	$ \vec{1} h 1 $	h^{\prime} f 1
s	—	$\begin{bmatrix} \alpha_1' & \alpha_2 & 1 \end{bmatrix}$	α_2^{\prime} α_3 1	$\begin{bmatrix} \alpha'_3 & h & h' \end{bmatrix}$	$\begin{bmatrix} 1 & f & 1 \end{bmatrix}$
			_		

The sequence $(x_1, x_2, x_3, \alpha_1, \alpha_2, \alpha_3, h, f)$ is the only one possible generating key sequence. It follows that in the base of semiretract S there is exactly one word, namely

$x_1x_1'x_2, x_2'x_3x_3'\alpha_1\alpha_1'\alpha_2\alpha_2'\alpha_3\alpha_3'hh'f.$

Assume that the formula α is satisfiable by an assignment $l_1 = TRUE, ..., l_p = TRUE$, where l_j for all j = 1, ..., m is a literal from the set $\{x_j, \neg x_j\}$. Let us fix the order of key codes $C_{l_1}, ..., C_{l_p}, C_s$. Note that $col_L(x_i)$ for i = 1, ..., p relatively to the order $C_{l_1}, ..., C_{l_p}, C_s$ contains elements x_i and 1 at the positions that corresponds to the key codes C_{l_i} and C_s respectively. Quite similar, $col_L(\alpha_j), j = 1, ..., m$ relatively to the order $C_{l_1}, ..., C_{l_p}, C_s$ contains elements α'_j at the position that corresponds to the key code indexed by the literal that makes clause α_j true and contains 1 at position that corresponds to the key code C_s . Since elements $x'_1, ..., x'_p, \alpha'_1, ..., \alpha'_m, h'$ are pairwise different then the only possible key sequence in semiretract generated by $C_{l_1}, ..., C_{l_p}, C_s$ is still $(x_1, ..., x_p, \alpha_1, ..., \alpha_m, h, f)$. It follows that

$$(\bigcap_{i=1}^{p} C_{x_{i}}^{*} \cap C_{\neg x_{i}}^{*}) \cap C_{s}^{*} = (\bigcap_{i=1}^{p} C_{l_{i}}^{*}) \cap C_{s}^{*}$$

and hence $(C_{x_1}, C_{\neg x_1}, ..., C_{x_p}, C_{\neg x_p}, C_s, p+1)$ is in MIN - SEM. Let $(C_{x_1}, C_{\neg x_1}, ..., C_{x_p}, C_{\neg x_p}, C_s, p+1)$ in MIN - SEM and assume that

 $C_{l_1},...,C_{l_p},C_{l_{p+1}} \in \{C_{x_1},C_{\neg x_1},...,C_{x_p},C_{\neg x_p},C_s\}$

for some $l_1, ..., l_{p+1} \in \{x_1, \neg x_1, ..., x_p, \neg x_p, s\}$ are such that the equality

$$(\bigcap_{i=1}^{p} C_{x_{i}}^{*} \cap C_{\neg x_{i}}^{*}) \cap C_{s}^{*} = \bigcap_{i=1}^{p+1} C_{l_{i}}^{*}$$

is true. Since $f \in A^*$ is not in the base of semiretract $\bigcap_{i=1}^{p+1} C_{l_i}^*$ (more precisely, since f is not final key), then C_s has to be in $\{C_{l_1}, ..., C_{l_{p+1}}\}$. Assume that $C_s = C_{l_{p+1}}$. Since the column $col_R(x_i)$ for all i = 1, ..., p relatively to the order $C_{l_1}, ..., C_{l_p}, C_s$ has to contain $x_i^{'}(x_i$ is not a final key) at some position, then C_{x_i} or $C_{\neg x_i}$ is in the set $C_{l_1}, ..., C_{l_p}$. It follows that an assignment $l_1 = TRUE, ..., l_p = TRUE$ is well defined. Quite similar, the column $col_R(\alpha_j)$ for all j = 1, ..., m with respect to the order $C_{l_1}, ..., C_{l_p}, C_s$ has to contain $\alpha_j^{'}$ at some position, exactly at positions that corresponds to key codes $C_{\alpha_j^1}, C_{\alpha_j^2}$ or $C_{\alpha_1^3}$. Hence, there exist a literal $l \in \{l_1, ..., l_p\}$ that makes the clause $\alpha_j \equiv \alpha_j^1 \lor \alpha_j^1 \lor \alpha_j^3$ true. Hence, α is satisfiable.

Example 5.2. Formula ϕ is satisfiable by the assignment

$$x_1 = TRUE, x_2 = TRUE, \neg x_3 = FALSE.$$

Let us consider blocks A_k for all $k \in K$ relatively to $C_{x_1}, C_{x_2}, C_{\neg x_3}, C_s$:

								· ,		··· 2 /			,	
x_1	_	1	x_1	x_1^{\prime}	$\begin{bmatrix} 1 \\ \cdot \end{bmatrix}$	x_2	1	$\begin{bmatrix} x'_2 \end{bmatrix}$	x_3	1	$\begin{bmatrix} x'_3 \end{bmatrix}$	α_1	$\alpha_{1}^{'}$]
x_2	_	1	x_1	1	x_1	x_2 :	$\vec{x_2}$	1	x_3	1	x'_3	α_1	1	
$\neg x_3$	_	1	x_1	1	x_1	x_2	1 '	x'_2	x_3	x'_{3}	' 1	α_1	1	
s	—	[1	x_1	1	$\begin{bmatrix} x'_1 \end{bmatrix}$	x_2	1	$\begin{bmatrix} x'_2 \end{bmatrix}$	x_3	1	$\begin{bmatrix} x'_3 \end{bmatrix}$	α_1	1	
x_1	_	$\begin{bmatrix} 1 \\ \cdot \end{bmatrix}$	α_2	1	$\int \alpha'_2$	α_3	1]	Γα	a_3^{\prime} h	1	$\begin{bmatrix} h' \end{bmatrix}$	f	1]	
x_2	_	α_1	α_2	α_2	1	α_3	1	0	$a_3' h$	1	h'	f	1	
$\neg x_3$	_	α_1	α_2	$\alpha_{2}^{'}$	' 1	α_3	α'_3	, .	1 h	1	' h'	f	1	•
s	_	α'_1	α_2	1		α_3	1		h_{n} h	h'		f	1	

According to the previous considerations the key x_1 is still the one initial key, f is still the one final key and key sequence $(x_1, x_2, x_3, \alpha_1, \alpha_2, \alpha_3, h, f)$ is the one possible key sequence relatively to the order $C_{x_1}, C_{x_2}, C_{\neg x_1}, C_s$.

References

- W.Forys, T.Krawczyk, J.A.Anderson, Semiretracts a counterexample and some results, Theoretical Computer Science, 307, 2003
- $[2]\,$ W.Forys, T.Krawczyk, The algorithmic approach to \dots , 2005
- [3] J.A.Anderson, The intersection of retracts of A^* , Theoretical Computer Science, 237, 2000
- [4] J.A.Anderson, Code properties of minimal generating sets of retracts and semiretracts, SEA Bull.Math, 18, 1994