MATEMATYKA DYSKRETNA www.ii.uj.edu.pl./preMD/

Sylwia CICHACZ, Agnieszka GÖRLICH

Decomposition
of complete bipartite graphs
into open trails

Preprint Nr MD 022
(otrzymany dnia 3 października 2006)

Kraków 2006

Decomposition of complete bipartite graphs into open trails

Sylwia Cichacz*, Agnieszka Görlich

AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
June 20, 2006

Abstract

It has been showed in [4] that any bipartite graph $K_{a, b}$, where a, b are even is decomposable into closed trails of prescribed even lengths. In this article we consider the corresponding question for open trails. We prove a necessary and sufficient condition for graphs $K_{a, b}$ to be decomposable into edge-disjoint open trails of positive lengths (less than $a b$) whenever these lengths sum up to the size of the graph $K_{a, b}$. Let $K_{a, a}^{\prime}:=K_{a, a}-I_{a}$ for any 1-factor I_{a}. We also prove that for odd a $K_{a, a}^{\prime}$ can be decomposed in a similar manner.

1 Introduction

Consider a simple graph G whose size we denote by $e(G)$. Write $V(G)$ for the vertex set and $E(G)$ for the edge set of a graph G.

A sequence of positive integers $\tau=\left(t_{1}, t_{2}, \ldots, t_{p}\right)$ is called admissible for a graph G if it adds up to $e(G)$ and for each $i \in\{1, \ldots, p\}$ there exists an open trail of length t_{i} in G. Let $\tau=\left(t_{1}, t_{2}, \ldots, t_{p}\right)$ be an admissible sequence for G. If G is edge-disjointly decomposable into open trails $T_{1}, T_{2}, \ldots, T_{p}$ of lengths $t_{1}, t_{2}, \ldots, t_{p}$ respectively, then τ is called realizable in G and the sequence $\left(T_{1}, T_{2}, \ldots, T_{p}\right)$ is said to be $a G$-realization of τ or a realization of τ in G.

[^0]Let $K_{a, b}$ be the complete bipartite graph with two sets of vertices A and B such that $|A|=a$ and $|B|=b$. In our paper we prove a necessary and sufficient condition for graphs $K_{a, b}$ to be decomposable into edge-disjoint open trails of positive lengths $t_{1}, t_{2}, \ldots t_{p}$ for any admissible sequence $\tau=$ $\left(t_{1}, t_{2}, \ldots t_{p}\right)$.
Such problems were first investigated by P.N. Balister.
Theorem 1 ([1]) Let $L=\sum_{i=1}^{p} t_{i}, t_{i} \geqslant 3$, with $L=\binom{n}{2}$ when n is odd and $\binom{n}{2}-\frac{n}{2}-2 \leqslant L \leqslant\binom{ n}{2}-\frac{n}{2}$ when n is even. Then we can write some subgraph of K_{n} as an edge union of circuits of lengths t_{1}, \ldots, t_{p}.

Theorem 2 ([2]) The following conditions are both necessary and sufficient for packing $\bigcup_{i=1}^{p} P_{l_{i}}$ into K_{n} with endpoints mapped to distinct vertices:
$L=\binom{n}{2}$ or $L \leqslant\binom{ n}{2}-3$ if $r=0$,
$L \leqslant\binom{ n}{2}-\frac{n}{2}$ if $r>0$ and r (or n) is even,
$L \leqslant\binom{ n}{2}-p$ if r (or n) is odd:
where $n=2 p+r$ and $L=\sum_{i=1}^{p} l_{i}$. In particular, $L \leqslant\binom{ n-1}{2}$ is always sufficient.

The motivation and application of Theorems 1 and 2 can be found in problems concerning vertex-distinguishing proper edge-coloring of graphs.

The similar theorem for the closed trails has been proved in [4] by M. Horňák and M. Woźniak.

Theorem 3 ([4]) If a, b are positive even integers, then if $\sum_{i=1}^{p} t_{i}=a b$ and there is a closed trail of length t_{i} in $K_{a, b}$ (for all $i \in\{1, \ldots, p\}$), then $K_{a, b}$ can be (edge-disjointly) decomposed into closed trails $T_{1}, T_{2}, \ldots, T_{p}$ of lengths $t_{1}, t_{2}, \ldots, t_{p}$ respectively.

This problem is also solved by S. Cichacz for directed bipartite graphs and bipartite multigraphs, see [3].

We say that a graph G is Eulerian if and only if there exists a closed trail through every edge of G. Here and subsequently, a trail T of length n we identify with any sequence $\left(v_{1}, v_{2}, \ldots, v_{n+1}\right)$ of vertices of T such that $v_{i} v_{i+1}$ are distinct edges of T for $i=1,2, \ldots, n$. Notice that we do not require the v_{i} to be distinct. A trail T is closed if $v_{1}=v_{n+1}$ and T is open if $v_{1} \neq v_{n+1}$. However, closed trail will be regarded as an Eulerian graph of order n. A graph G is said to be even if the degrees of all its vertices are even. By Euler's theorem, a connected even graph is Eulerian (i.e. contains a closed
trail passing through all its edges exactly once).
Let $K_{a, a}$ be a complete bipartite graph and let I_{a} denote a 1-factor in $K_{a, a}$. We denote by $K_{a, a}^{\prime}$ a graph $K_{a, a}-I_{a}$.

2 Decomposition of bipartite graphs into open trails

There is no loss of generality in assuming that $a \geq b$ for each complete bipartite graph $K_{a, b}$.

Let us observe that in any complete bipartite graph $K_{a, b}$ different from $K_{1,1}$ and $K_{2, b}$ for odd b does not exists an open trail of length $a b$. Hence, $p \geq 2$ for each admissible sequence $\tau=\left(t_{1}, \ldots, t_{p}\right)$ for each graph $K_{a, b}$ different from $K_{1,1}$ and $K_{2, b}$ for any odd b.

Theorem 4 For each complete bipartite graph $K_{a, b}$ and for each admissible sequence $\tau=\left(t_{1}, \ldots, t_{p}\right)$ for $K_{a, b}$ there exists a realization of τ in $K_{a, b}$ if and only if one of the following conditions holds:

$$
1^{0} \quad a=1 \text { or }
$$

$2^{0} a$ and b are both even.
Let $A:=\left\{x_{1}, \ldots, x_{a}\right\}$ and $B:=\left\{v_{1}, \ldots, v_{b}\right\}$.
Necessity. We show that if $a>1$ and a or b is odd then there exists an admissible sequence τ for $K_{a, b}$ such that there is no realization for τ in $K_{a, b}$. We divide this proof into several parts:
A. Let us assume that $a=2$ and b is odd. It can be easily seen that there exists an open trail of length two in $K_{2, b}$ and because of Euler's theorem there exists an open trail of length $(2 b-2)$ in $K_{2, b}$. Hence $\tau:=(2,2 b-2)$ is an admissible sequence for $K_{2, b}$ but τ is not realizable in $K_{2, b}$.
B. Let $a \geq 3$ and $b \geq 3$ be such that one of them is an even and the second one is an odd integer. Assume first that $|A|$ is odd and $|B|$ is even. Thus, $d\left(x_{i}\right)$ is even for each $i \in\{1, \ldots, a\}$ and $d\left(v_{j}\right)$ is odd for each $j \in\{1, \ldots, b\}$. Let G_{1} be a subgraph of $K_{a, b}$ inducing by the set of vertices $\left\{x_{1}, v_{1}, v_{2}, \ldots, v_{b-1}\right\}$ (see fig. 1). Let $G^{\prime}:=K_{a, b}-E\left(G_{1}\right)$. Observe that the only two vertices in G^{\prime} of odd degree are v_{1} and x_{b}. Thus, in $K_{a, b}$ there exists an open trail of length $(a b-b+1)$. Moreover, there exists an open trail of length $(b-1)$,
but a sequence $\tau:=(b-1, a b-b+1)$ is not realizable in $K_{a, b}$ (because if T_{1} denotes an open trail of length $(b-1)$ in $K_{a, b}$, then in $K_{a, b}-E\left(T_{1}\right)$ is at least four vertices of odd degree). Analogously we show that such sequence τ is not realizable in $K_{a, b}$ for even $|A|$ and odd $|B|$.

Figure 1: Subgraphs G_{1}, G_{2} and G_{3}.
C. Let $a \geq 3$ and $b \geq 3$ be both odd. Let us consider two subcases:
a) $a=b$. Let G_{2} be a subgraph of $K_{a, a}$ with the vertex set $V\left(G_{2}\right)=$ $\left\{x_{2}, \ldots, x_{a}, v_{1}, \ldots, v_{a}\right\}$ and the edge set $E\left(G_{2}\right)=\left\{x_{2} v_{1}, x_{2} v_{2}, x_{3} v_{3}, \ldots, x_{i} v_{i}\right.$, $\left.\ldots, x_{a} v_{a}\right\}$ (see fig. 1). In $K_{a, a}-E\left(G_{2}\right)$ there exists only two vertices of odd degree, namely x_{1} and x_{2}. Hence in $K_{a, a}$ is an open trail of length $\left(a^{2}-a\right)$. There is also an open trail of length a in $K_{a, a}$. But the sequence $\tau:=\left(a, a^{2}-a\right)$ is not realizable in $K_{a, a}$.
b) $a<b$. Let G_{3} be a subgraph of $K_{a, b}$ with $V\left(G_{3}\right)=\left\{x_{1}, \ldots, x_{a}, v_{1}, \ldots, v_{b-2}\right\}$ and with $E\left(G_{3}\right)=\left\{x_{1} v 1, x_{2} v_{2}, x_{3} v_{3}, \ldots, x_{a} v_{a}, x_{a} v_{a+1}, \ldots, x_{a} v_{b-3}, x_{a} v_{b-2}\right\}$. Observe that $d_{G_{3}}\left(x_{1}\right)=\ldots=d_{G_{3}}\left(x_{a-1}\right)=d_{G_{3}}\left(v_{1}\right)=\ldots=d_{G_{3}}\left(v_{b-2}\right)=1$ and $d_{G_{3}}\left(x_{a}\right)=b-a-1$ (see fig. 1). Hence, in $K_{a, b}-E\left(G_{3}\right)$ the only two vertices of odd degree are v_{b-1} and v_{b}. This implies that there exists an open trail of length $(a b-b+2)$ in $K_{a, b}$. Obviously, in $K_{a, b}$ exists an open trail of length $(b-2)$ but does not exists edge-disjoint decomposition of $K_{a, b}$ into open trail of lengths $(b-2)$ and $(a b-b+2)$.
Sufficiency. Assume first that $a=1$. It can be easily seen that $K_{1, b}$ is arbitrarily decomposable into open trails of length one and two.

From now on, let us assume that G is any complete bipartite graph $K_{a, b}$ such that a and b are even. Let $\tau=\left(t_{1}, \ldots, t_{p}\right)$ be a sequence of positive integers such that $\sum_{i=1}^{p} t_{i}=a b$ and $p \geq 2$. We show that there exists a τ-realization in $K_{a, b}$. We consider the following cases:
A. Let us suppose that t_{i} is even for each $i \in\{1, \ldots, p\}$.

Case I. Assume now that t_{i} is not an even multiplicity of b for each $i \in$ $\{1, \ldots, p\}$. Consider a sequence

$$
\begin{gathered}
V:=\left(v_{1}, x_{1}, v_{2}, x_{2}, v_{3}, x_{1}, \ldots, x_{1}, v_{b}, x_{2},\right. \\
\left.v_{1}, x_{3}, v_{2}, x_{4}, v_{3}, x_{3}, \ldots, x_{3} v_{b}, x_{4}, \ldots, v_{1}, x_{a-1}, \ldots, x_{a-1}, v_{b}, x_{a}, v_{1}\right) .
\end{gathered}
$$

Clearly, this sequence of vertices creates an Eulerian trail in $K_{a, b}$. We show

Figure 2: Sequence V.
that we can part V into subsequences V_{1}, \ldots, V_{p} such that for each $i \in\{1, \ldots, p\}$ the set of vertices in V_{i} induces an open trail T_{i} in $K_{a, b}$ of length t_{i} and T_{1}, \ldots, T_{p} are edge-disjoint subgraphs of $K_{a, b}$ (see fig 2).

Let us start at the following observation: let $W=\left(w_{1}, \ldots, w_{k}\right) \subset V$ be a subsequence of consecutive elements of V such that $w_{1}=w_{k}=v_{i}$ for some $i \in\{1, \ldots, p\}$. The set of vertices in W induces a closed trail in $K_{a, b}$ of length $m \cdot b$ for some even $m \leq a$.

We will define subsequences V_{1}, \ldots, V_{p} of V. Let V_{1} contain $\left(t_{1}+1\right)$ first elements of V so it starts at v_{1} and its next elements are the consecutive elements of V up to $\left(t_{1}+1\right)$-th element. Let us denote this element by v^{2}. Observe that it belongs to B (obviously, it is different than v_{1}). Let V_{2} start at v^{2} and let it contains next $\left(t_{2}+1\right)$ elements of sequence V. We denote the last element of V_{2} by v^{3} so $V_{2}=\left(v^{2}, \ldots, v^{3}\right)$. In the similar way we can define the rest of subsequences V_{3}, \ldots, V_{p}. The last element of sequence V_{i} we will denote by v^{i+1}. It is easy to see that $v^{i} \in B$ for each $i \in\{2, \ldots, p\}$. Thus, a sequence V_{i} contains the consecutive elements of V, starts at some vertex in B and finishes at the other for each $i \in\{1, \ldots, p\}$. Hence, because of above
observation for each $i \in\{1, \ldots, p\}$ the set of vertices of V_{i} induces an open trail T_{i} of length t_{i} in G. Moreover, T_{1}, \ldots, T_{p} are edge-disjoint subgraphs of G.
Case II. Let $t_{1}=m_{1} \cdot b, \ldots, t_{l}=m_{l} \cdot b$ for some $l \in\{1, \ldots, p\}$ and for some even integers m_{1}, \ldots, m_{l}. Suppose first that $l \geq 2$ and let $m:=m_{1}+\ldots+m_{l}$. Then, consider a sequences:

$$
V^{\prime}:=\left(x_{m}, v_{1}, x_{1}, v_{2}, x_{2}, v_{3}, x_{1}, \ldots, x_{1}, v_{b}, x_{2}\right.
$$

$$
\left.v_{1}, x_{3}, v_{2}, x_{4}, v_{3}, x_{3}, \ldots, x_{3} v_{b}, x_{4}, \ldots, v_{1}, x_{m-1}, \ldots, x_{m-1}, v_{b}, x_{m}\right)
$$

and

$$
\begin{gathered}
V^{\prime \prime}:=\left(v_{1}, x_{m+1}, v_{2}, x_{m+2}, v_{3}, x_{m+1}, \ldots, x_{m+1}, v_{b}, x_{m+2},\right. \\
\left.\ldots, v_{1}, x_{a-1}, \ldots, x_{a-1}, v_{b}, x_{a}, v_{1}\right) .
\end{gathered}
$$

Figure 3: Sequence V^{\prime}.

This sequences of vertices create edge-disjoint closed trails in G. Let G^{\prime} be a subgraph of G induced by the set of vertices of V^{\prime}. Hence V^{\prime} is an Eulerian trail for G^{\prime} which is a complete bipartite subgraph of G. Let us part V^{\prime} into disjoint subsequences $V_{1}:=\left(x_{m}, \ldots, x_{m_{1}}\right), V_{i}:=\left(x_{m_{1}+\ldots+m_{i-1}}, \ldots, x_{m_{1}+\ldots+m_{i}}\right)$ for $i \in\{2, \ldots, l-1\}$ and $V_{l}:=\left\{x_{m_{1}+\ldots+m_{l-1}}, \ldots, x_{m}\right)$. The sets of vertices of V_{i} induce edge-disjoint open trails T_{1}, \ldots, T_{l} of lengths t_{1}, \ldots, t_{l} (see fig. 3).

Let $G^{\prime \prime}$ be a graph induced by the set of vertices of $V^{\prime \prime}$. Observe that $G^{\prime \prime}$ is also a complete bipartite subgraph of G with two disjoint sets of vertices $C:=A \backslash\left\{x_{1}, \ldots, x_{m}\right\}$ and B. The vertices of $V^{\prime \prime}$ induce an Eulerian trail for $G^{\prime \prime}$ so we can define the edge-disjoint open trails T_{l+1}, \ldots, T_{p} of lengths

Figure 4: Sequence $V^{\prime \prime}$.
t_{l+1}, \ldots, t_{p} in $G^{\prime \prime}$ analogously as in case I (see fig 4). Obviously, $T_{1}, . ., T_{p}$ are edge-disjoint open trails in G.

Let us assume now that $l=1$. Hence, $t_{1}=m \cdot b$ for some even integer m and t_{i} is not an even multiplicity of b for each $i \in\{2, \ldots, p\}$. Let us consider a sequences $V^{\prime \prime \prime}$ (see fig. 5) and $V^{I V}$ (see fig. 6) such that:

$$
V^{\prime \prime \prime}:=\left(v_{1}, x_{1}, v_{2}, x_{2}, v_{3}, x_{1}, v_{4}, x_{2}, v_{5} \ldots, x_{m-1}, v_{b}, x_{a}, v_{b-1}\right)
$$

and

$$
\begin{gathered}
V^{I V}:=\left(v_{b-1}, x_{a-1}, v_{b-2}, x_{a}, v_{b-3}, x_{a-1}, v_{b-4}, x_{a}, \ldots, v_{1}, x_{a-1}, v_{b}\right. \\
x_{a-2}, v_{b-1}, x_{a-3}, v_{b-2}, \ldots, x_{a-2}, v_{1}, x_{a-3}, v_{b}, \ldots \\
\left.x_{m+2}, v_{b-1}, x_{m+1}, v_{b-2}, \ldots, x_{m+2}, v_{1}, x_{m+1}, v_{b}, x_{m}, v_{1}\right) .
\end{gathered}
$$

Observe that the vertices of $V^{\prime \prime \prime}$ induce an open trail T_{1} of length t_{1}. Moreover, nearly each subsequence which contains consecutive vertices of $V^{I V}$ and start and finish at the same vertex v_{i} for any $i \in\{1, \ldots, b\}$ induces a closed trail of length $k \cdot b$ for some even integer k. The only exception is the set of five last vertices $\left\{v_{1}, x_{m+1}, v_{b}, x_{m}, v_{1}\right\}$ which induces a closed trail of length four in G. Suppose now that there exists $j \in\{2, \ldots, p\}$ such that $t_{j} \neq 4$. Without loss of generality we can assume that $t_{p} \neq 4$. For such admissible sequence τ, applying analogous methods as in case I, we can define the open trails T_{2}, \ldots, T_{p} of length t_{2}, \ldots, t_{p} in G such that T_{1}, \ldots, T_{p} are edge-disjoint subgraphs of G. Assume now that $t_{i}=4$ for each $i \in\{2, \ldots, p\}$ and $b>4$. The

Figure 5: Sequence $V^{I I I}$.

Figure 6: Sequence $V^{I V}$.
vertices of a sequence

$$
V^{V}:=\left(v_{2}, x_{2}, v_{3}, x_{1}, v_{4}, x_{2}, v_{5}, \ldots, x_{m-1}, v_{b}, x_{a}, v_{b-1}, x_{a-1}, v_{b-2}\right)
$$

induce an open trail of length t_{1} in G. Consider a sequence

$$
\begin{gathered}
V^{V I}:=\left(v_{b-2}, x_{a}, v_{b-3}, x_{a-1}, v_{b-4}, x_{a}, \ldots\right. \\
\left.v_{1}, x_{a-1}, v_{b}, x_{a-2}, v_{b-1}, x_{a-3}, v_{b-2}, \ldots, x_{m+1}, v_{b}, x_{m}, v_{1}, x_{1}, v_{2}\right) .
\end{gathered}
$$

(see fig. 7 and 8) Let us part $V^{V I}$ into $(p-1)$ sets, each of them containing five consecutive elements of it. Then these sets induce edge-disjoint open trails of length four in G. A decomposition of $G=K_{4,4}$ into edge-disjoint

Figure 7: Sequence V^{V}.

Figure 8: Sequence $V^{V I}$.
open trails for $\tau=(8,4,4)$ we show in figure 9 .
B. Suppose now that some of elements of τ are odd. Without loss of generality we can assume that t_{1}, \ldots, t_{l} are odd for some $l \leq p$ and t_{l+1}, \ldots, t_{p} are even. Observe that l is even so there exists a positive number k such that $l=2 k$. Let us define $d_{i}:=t_{2 i-1}+t_{2 i}$ for $i \in\{1, \ldots, k\}$. Consider a sequence $\tau^{\prime}:=\left(d_{1}, \ldots, d_{k}, t_{2 k+1}, \ldots, t_{p}\right\}$. Applying the same arguments as above G is decomposable into open trails $D_{1}, \ldots, D_{k}, T_{2 k+1}, \ldots T_{p}$ of lengths d_{1}, \ldots, d_{k}, $t_{2 k+1}, \ldots, t_{p}$. It is easy to observe that each open trail D_{j} we can part into two edge-disjoint open trails $T_{2 j-1}, T_{2 j}$ of lenghts $t_{2 j-1}, t_{2 j}$. Hence, T_{1}, \ldots, T_{p} is a G-realization of τ and the proof is finished.

Figure 9: A decomposition of $K_{4,4}$ into edge-disjoint open trails for $\tau=$ $(8,4,4)$.

Let us consider now a complete bipartite graphs $K_{a, a}$ for odd a. By the previous theorem such graphs are not arbitrarily decomposable into open trails but we can proof the following theorem:

Theorem 5 For any odd a a graph $K_{a, a}^{\prime}$ is decomposable into open trails of lengths t_{1}, \ldots, t_{p} for each admissible sequence $\tau=\left(t_{1}, \ldots, t_{p}\right)$.

Let G be a bipartite graph $K_{a, a}^{\prime}$ with odd a. Observe that $p>1$, because there is not exist an open trail of length $\left(a^{2}-a\right)$ in $K_{a, a}^{\prime}$. Let $A:=\left\{x_{1}, \ldots, x_{a}\right\}$ and $B:=\left\{v_{1}, \ldots, v_{a}\right\}$. Let I_{a} be the matching such that $x_{i} v_{j} \in I_{a}$ if and only if $j=i$. Let $\tau=\left(t_{1}, \ldots, t_{p}\right)$ be a sequence of positive integers such that $\sum_{i=1}^{p} t_{i}=a^{2}-a$ and $p \geq 2$. The proof of this theorem is analogous to the proof of Theorem 4.
Let us suppose first that t_{i} is even for each $i \in\{1, \ldots, p\}$. We consider two cases:
Case I. Assume now that t_{i} is not an even multiplicity of a for each $i \in$ $\{1, \ldots, p\}$. Let us consider a sequence (see fig. 10)
$U:=\left(v_{1}, x_{a}, v_{2}, x_{1}, v_{3}, x_{2}, \ldots, v_{1}, v_{a}, x_{2}, v_{1}, x_{3}, v_{2}, x_{4}, v_{3}, x_{a}, v_{4}, \ldots, x_{3}, v_{a}, x_{4}, \ldots\right.$,

$$
v_{1}, x_{i}, v_{2}, x_{i+1}, \ldots, x_{i+1}, v_{i}, x_{a}, v_{i+1}, x_{i}, v_{i+2}, x_{i+1}, \ldots, x_{i}, v_{a}, x_{i+1}, \ldots,
$$

$$
\left.v_{1}, x_{a-2}, v_{2}, x_{a-1}, \ldots, x_{a-1}, v_{a-2}, x_{a}, v_{a-1}, x_{a-2}, v_{a}, x_{a-1}\right)
$$

This sequence of vertices creates an Eulerian trail in $K_{a, a}-I_{a}$. Let $W=$ $\left(w_{1}, \ldots, w_{k}\right) \subset V$ be a subsequence of consecutive elements of U such that $w_{1}=w_{k}=v_{i}$ for some $i \in\{1, \ldots, p\}$. The set of vertices in W induces a closed trail in $K_{a, a}-I_{a}$ of length $m \cdot a$ for some even $m \leq a$.

We will define subsequences V_{1}, \ldots, V_{p} of U analogously like in the proof of Theorem 4. So let V_{1} contain $\left(t_{1}+1\right)$ first elements of U. Hence it starts at

Figure 10: Sequence U.
v_{1} and its next elements are the consecutive elements of U up to $\left(t_{1}+1\right)$-th element. Let us denote this element of B by v^{2}. Let V_{2} start at v^{2} and let it contains next $\left(t_{2}+1\right)$ elements of sequence U and so on. For each $i \in\{1, \ldots, p\}$ the set of vertices of V_{i} induces an open trail T_{i} of length t_{i} in G and T_{1}, \ldots, T_{p} are edge-disjoint subgraphs of G.
Case II. Let $t_{1}=m_{1} \cdot a, \ldots, t_{l}=m_{l} \cdot a$ for some $l \in\{1, \ldots, p\}$ and for some even integers m_{1}, \ldots, m_{l}. Suppose first that $l \geq 2$ and let $m:=m_{1}+\ldots+m_{l}$. Then, consider a sequences

$$
\begin{gathered}
U^{\prime}:=\left(x_{m}, v_{1}, x_{a}, v_{2}, x_{2}, v_{3}, x_{1}, \ldots, x_{1}, v_{a}, x_{2}, v_{1}, x_{3}, v_{2}, x_{4}, v_{3}, x_{a}, v_{4}, x_{3}, \ldots,\right. \\
x_{3}, v_{a}, x_{4}, \ldots, v_{1}, x_{i}, v_{2}, x_{i+1}, \ldots, x_{i+1}, v_{i}, x_{a}, v_{i+1}, x_{i}, v_{i+2}, x_{i+1}, \ldots, x_{i}, v_{a}, x_{i+1}, \ldots, \\
\left.\quad v_{1}, x_{m-1}, v_{2}, x_{m}, \ldots, x_{m}, v_{m-1}, x_{a}, v_{m}, x_{m-1}, v_{m+1}, x_{m}, \ldots, x_{m-1}, v_{a}, x_{m}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
U^{\prime \prime}:=\left(v_{1}, x_{m+1}, v_{2}, x_{m+2}, v_{3}, x_{m+1}, \ldots, x_{m+2}, v_{m+1}, x_{a}, v_{m+2}, x_{m+1}, v_{m+3}, x_{m+2}, \ldots,\right. \\
x_{m+1}, v_{a}, x_{m+2}, \ldots, v_{1}, x_{i}, v_{2}, x_{i+1}, \ldots \\
x_{i+1}, v_{i}, x_{a}, v_{i+1}, x_{i}, v_{i+2}, x_{i+1}, \ldots, x_{i}, v_{a}, x_{i+1}, \ldots, v_{1}, x_{a-2}, v_{2}, x_{a-1}, \ldots, \\
\left.\left.x_{a-1}, v_{a-2}, x_{a}, v_{a-1}, x_{a-2}, v_{a}, x_{a-1}\right), \ldots, v_{1}, x_{a-1}, \ldots, x_{a-1}, v_{b}, x_{a}, v_{1}\right) .
\end{gathered}
$$

This sequences of vertices create edge-disjoint closed trails in G. Let G^{\prime} be a subgraph of G induced by the set of vertices of U^{\prime}. Hence U^{\prime} is an Eulerian trail for G^{\prime}. Let us part U^{\prime} into disjoint subsequences $V_{1}:=$ $\left(x_{m}, \ldots, x_{m_{1}}\right), V_{i}:=\left(x_{m_{1}+\ldots+m_{i-1}}, \ldots, x_{m_{1}+\ldots+m_{i}}\right)$ for $i \in\{2, \ldots, l-1\}$ and

Figure 11: Sequence U^{\prime}.

Figure 12: Sequence $U^{\prime \prime}$.
$V_{l}:=\left\{x_{m_{1}+\ldots+m_{l-1}}, \ldots, x_{m}\right)$. The sets V_{i} create the sets of vertices of edgedisjoint open trails T_{1}, \ldots, T_{l} of lengths t_{1}, \ldots, t_{l} (see fig. 11).

Now, let $G^{\prime \prime}$ be a graph induced by the set of vertices of $U^{\prime \prime}$. Observe that $G^{\prime \prime}$ is a complete bipartite subgraph of G with two disjoint sets of vertices $C:=A \backslash\left\{x_{1}, \ldots, x_{m}\right\}$ and B (see fig. 12). The vertices of $U^{\prime \prime}$ induce an Eulerian trail for $G^{\prime \prime}$ so we can define the edge-disjoint open trails T_{l+1}, \ldots, T_{p} of lengths t_{l+1}, \ldots, t_{p} in $G^{\prime \prime}$.

Let us assume now that $l=1$. Hence, $t_{1}=m \cdot a$ for some even integer m and t_{i} is not an even multiplicity of a for each $i \in\{2, \ldots, p\}$. Let us consider a sequences

$$
U^{\prime \prime \prime}:=\left(v_{1}, x_{a}, v_{2}, x_{2}, v_{3}, x_{1}, v_{4}, x_{2}, v_{5}, \ldots, x_{m-1}, v_{a}, x_{a-2}, v_{a-1}\right)
$$

and

$$
\begin{gathered}
U^{I V}:=\left(v_{a-1}, x_{a}, v_{a-2}, x_{a-1}, v_{b-3}, \ldots, v_{1}, x_{a-1}, v_{a}, \ldots\right. \\
x_{a-4}, v_{a-1}, x_{a-3}, v_{a-2}, x_{a-4}, v_{a-3}, x_{a}, v_{a-4}, x_{a-3}, v_{a-5}, \ldots \\
\left.x_{m+1}, v_{a-1}, x_{m+2}, v_{a-2}, x_{m+1}, \ldots, v_{1}, x_{m+2}, v_{a}, x_{m}, v_{1}\right)
\end{gathered}
$$

Observe that the vertices of $U^{\prime \prime \prime}$ induce an open trail T_{1} of length t_{1} (see

Figure 13: Sequence $U^{\prime \prime \prime}$.

Figure 14: Sequence $U^{I V}$.
fig. 13). Moreover, nearly each subsequence which contains consecutive vertices of $U^{I V}$ and start and finish at the same vertex v_{i} for any $i \in\{1, \ldots, b\}$ induces a closed trail of length $k \cdot a$ for some even integer k (see fig. 14). The only exception is the set of five last vertices $\left\{v_{1}, x_{m+2}, v_{a}, x_{m}, v_{1}\right\}$ which induces a closed trail of length four in G. Suppose that there exists $j \in\{2, \ldots, p\}$ such that $t_{j} \neq 4$. Without loss of generality we can assume that $t_{p} \neq 4$. For such admissible sequence τ we can define the open trails T_{2}, \ldots, T_{p} of length t_{2}, \ldots, t_{p} in G such that T_{1}, \ldots, T_{p} are edge-disjoint subgraphs of G. Assume now that $t_{i}=4$ for each $i \in\{2, \ldots, p\}$. The vertices of a sequence

$$
U^{V}:=\left(v_{2}, x_{1}, v_{3}, x_{2}, v_{4}, x_{1}, v_{5}, \ldots, x_{m-1}, v_{a}, x_{a-2}, v_{a-1}, x_{a}, v_{a-2}\right)
$$

induce an open trail of length t_{1} in G (see fig. 15). Consider a sequence

$$
\begin{gathered}
U^{V I}:=\left(v_{a-2}, x_{a-1}, v_{a-3}, x_{a-2}, v_{a-4}, \ldots\right. \\
x_{a-2}, v_{1}, x_{a-1}, v_{a}, x_{a-4}, v_{a-1}, x_{a-3}, v_{a-2}, x_{a-4}, v_{a-3}, \ldots \\
\left.x_{m+1}, v_{1}, x_{m+2}, v_{a}, x_{m}, v_{1}, x_{a}, v_{2}\right)
\end{gathered}
$$

Let us part $U^{V I}$ into $(p-1)$ sets, each of them containing five consecutive

Figure 15: Sequence U^{V}.
elements of it. Then these sets induce edge-disjoint open trails of length four in G (see fig. 16).
Suppose now that some of elements of τ are odd. It is obvious that there are even number of odd elements in τ. Analogously like in Theorem 4 we can "glue" odd parts creating an element of even length. Hence the proof is finished.

Figure 16: Sequence $U^{V I}$.

References

[1] Balister, P.N., Packing Circuits into K_{n}, Combin. Probab. Comput. 10 (2001) 463-499.
[2] Balister,P.N., and B. Bollobàs, R.H. Schelp, Vertex distinguishing colorings of graphs with $\Delta(G)=2$, Discrete Mathematics 252 (2002) 1729.
[3] Cichacz, S., Decomposition of complete bipartite digraphs and even complete bipartite multigraphs into closed trails, Preprint MD 016 (2005), http://www.ii.uj.edu.pl/preMD/index.htm, submitted to Discussiones Mathaticae - Graph Theory.
[4] Horňák, M., and M. Woźniak, Decomposition of complete bipartite even graphs into closed trails, Czechoslovak Mathematical Journal, 128 (2003) 127-134.

Redaktorami serii preprintów Matematyka Dyskretna są: Wit FORYŚ,
prowadzący seminarium Stowa, stowa, stowa...
w Instytucie Informatyki UJ
oraz
Mariusz WOŹNIAK, prowadzący seminarium Matematyka Dyskretna - Teoria Grafów na Wydziale Matematyki Stosowanej AGH.

[^0]: *Corresponding author. E-mail: cichacz@agh.edu.pl

