

Sylwia CICHACZ, Agnieszka GÖRLICH

$Decomposition\\ of\ complete\ bipartite\ graphs\\ into\ open\ trails$

Preprint Nr MD 022 (otrzymany dnia 3 października 2006)

Kraków 2006

Decomposition of complete bipartite graphs into open trails

Sylwia Cichacz, Agnieszka Görlich

AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

June 20, 2006

Abstract

It has been showed in [4] that any bipartite graph $K_{a,b}$, where a, b are even is decomposable into closed trails of prescribed even lengths. In this article we consider the corresponding question for open trails. We prove a necessary and sufficient condition for graphs $K_{a,b}$ to be decomposable into edge-disjoint open trails of positive lengths (less than ab) whenever these lengths sum up to the size of the graph $K_{a,b}$. Let $K'_{a,a} := K_{a,a} - I_a$ for any 1-factor I_a . We also prove that for odd $a K'_{a,a}$ can be decomposed in a similar manner.

1 Introduction

Consider a simple graph G whose size we denote by e(G). Write V(G) for the vertex set and E(G) for the edge set of a graph G.

A sequence of positive integers $\tau = (t_1, t_2, \dots, t_p)$ is called admissible for a graph G if it adds up to e(G) and for each $i \in \{1, \dots, p\}$ there exists an open trail of length t_i in G. Let $\tau = (t_1, t_2, \dots, t_p)$ be an admissible sequence for G. If G is edge-disjointly decomposable into open trails T_1, T_2, \dots, T_p of lengths t_1, t_2, \dots, t_p respectively, then τ is called realizable in G and the sequence (T_1, T_2, \dots, T_p) is said to be a G-realization of τ or a realization of τ in G.

^{*}Corresponding author. E-mail: cichacz@agh.edu.pl

Let $K_{a,b}$ be the complete bipartite graph with two sets of vertices A and B such that |A| = a and |B| = b. In our paper we prove a necessary and sufficient condition for graphs $K_{a,b}$ to be decomposable into edge-disjoint open trails of positive lengths $t_1, t_2, ... t_p$ for any admissible sequence $\tau =$ $(t_1, t_2, ...t_p).$

Such problems were first investigated by P.N. Balister.

Theorem 1 ([1]) Let $L = \sum_{i=1}^{p} t_i$, $t_i \ge 3$, with $L = \binom{n}{2}$ when n is odd and $\binom{n}{2} - \frac{n}{2} - 2 \le L \le \binom{n}{2} - \frac{n}{2}$ when n is even. Then we can write some subgraph of K_n as an edge union of circuits of lengths t_1, \ldots, t_p .

Theorem 2 ([2]) The following conditions are both necessary and sufficient

```
for packing \bigcup_{i=1}^{n} P_{l_i} into K_n with endpoints mapped to distinct vertices: L = \binom{n}{2} or L \leqslant \binom{n}{2} - 3 if r = 0, L \leqslant \binom{n}{2} - \frac{n}{2} if r > 0 and r (or n) is even, L \leqslant \binom{n}{2} - p if r (or n) is odd:
```

where n = 2p + r and $L = \sum_{i=1}^{p} l_i$. In particular, $L \leqslant \binom{n-1}{2}$ is always sufficient.

The motivation and application of Theorems 1 and 2 can be found in problems concerning vertex-distinguishing proper edge-coloring of graphs.

The similar theorem for the closed trails has been proved in [4] by M. Horňák and M. Woźniak.

Theorem 3 ([4]) If a, b are positive even integers, then if $\sum_{i=1}^{p} t_i = ab$ and there is a closed trail of length t_i in $K_{a,b}$ (for all $i \in \{1, ..., p\}$), then $K_{a,b}$ can be (edge-disjointly) decomposed into closed trails T_1, T_2, \ldots, T_p of lengths t_1, t_2, \ldots, t_p respectively.

This problem is also solved by S. Cichacz for directed bipartite graphs and bipartite multigraphs, see [3].

We say that a graph G is Eulerian if and only if there exists a closed trail through every edge of G. Here and subsequently, a trail T of length n we identify with any sequence $(v_1, v_2, \dots, v_{n+1})$ of vertices of T such that $v_i v_{i+1}$ are distinct edges of T for i = 1, 2, ..., n. Notice that we do not require the v_i to be distinct. A trail T is closed if $v_1 = v_{n+1}$ and T is open if $v_1 \neq v_{n+1}$. However, closed trail will be regarded as an Eulerian graph of order n. A graph G is said to be even if the degrees of all its vertices are even. By Euler's theorem, a connected even graph is Eulerian (i.e. contains a closed trail passing through all its edges exactly once).

Let $K_{a,a}$ be a complete bipartite graph and let I_a denote a 1-factor in $K_{a,a}$. We denote by $K'_{a,a}$ a graph $K_{a,a} - I_a$.

2 Decomposition of bipartite graphs into open trails

There is no loss of generality in assuming that $a \geq b$ for each complete bipartite graph $K_{a,b}$.

Let us observe that in any complete bipartite graph $K_{a,b}$ different from $K_{1,1}$ and $K_{2,b}$ for odd b does not exists an open trail of length ab. Hence, $p \geq 2$ for each admissible sequence $\tau = (t_1, ..., t_p)$ for each graph $K_{a,b}$ different from $K_{1,1}$ and $K_{2,b}$ for any odd b.

Theorem 4 For each complete bipartite graph $K_{a,b}$ and for each admissible sequence $\tau = (t_1, ..., t_p)$ for $K_{a,b}$ there exists a realization of τ in $K_{a,b}$ if and only if one of the following conditions holds:

$$1^0 \ a = 1 \ or$$

 2^0 a and b are both even.

Let $A := \{x_1, ..., x_a\}$ and $B := \{v_1, ..., v_b\}$.

Necessity. We show that if a > 1 and a or b is odd then there exists an admissible sequence τ for $K_{a,b}$ such that there is no realization for τ in $K_{a,b}$. We divide this proof into several parts:

A. Let us assume that a=2 and b is odd. It can be easily seen that there exists an open trail of length two in $K_{2,b}$ and because of Euler's theorem there exists an open trail of length (2b-2) in $K_{2,b}$. Hence $\tau := (2, 2b-2)$ is an admissible sequence for $K_{2,b}$ but τ is not realizable in $K_{2,b}$.

B. Let $a \geq 3$ and $b \geq 3$ be such that one of them is an even and the second one is an odd integer. Assume first that |A| is odd and |B| is even. Thus, $d(x_i)$ is even for each $i \in \{1, ..., a\}$ and $d(v_j)$ is odd for each $j \in \{1, ..., b\}$. Let G_1 be a subgraph of $K_{a,b}$ inducing by the set of vertices $\{x_1, v_1, v_2, ..., v_{b-1}\}$ (see fig. 1). Let $G' := K_{a,b} - E(G_1)$. Observe that the only two vertices in G' of odd degree are v_1 and v_2 . Thus, in $K_{a,b}$ there exists an open trail of length v_3 length v_4 length v_4 length v_5 length v_6 l

but a sequence $\tau := (b-1, ab-b+1)$ is not realizable in $K_{a,b}$ (because if T_1 denotes an open trail of length (b-1) in $K_{a,b}$, then in $K_{a,b} - E(T_1)$ is at least four vertices of odd degree). Analogously we show that such sequence τ is not realizable in $K_{a,b}$ for even |A| and odd |B|.

Figure 1: Subgraphs G_1, G_2 and G_3 .

C. Let $a \geq 3$ and $b \geq 3$ be both odd. Let us consider two subcases: a) a = b. Let G_2 be a subgraph of $K_{a,a}$ with the vertex set $V(G_2) = \{x_2, \ldots, x_a, v_1, \ldots, v_a\}$ and the edge set $E(G_2) = \{x_2v_1, x_2v_2, x_3v_3, \ldots, x_iv_i, \ldots, x_av_a\}$ (see fig. 1). In $K_{a,a} - E(G_2)$ there exists only two vertices of odd degree, namely x_1 and x_2 . Hence in $K_{a,a}$ is an open trail of length $(a^2 - a)$. There is also an open trail of length a in $K_{a,a}$. But the sequence $\tau := (a, a^2 - a)$ is not realizable in $K_{a,a}$.

b) a < b. Let G_3 be a subgraph of $K_{a,b}$ with $V(G_3) = \{x_1, \ldots, x_a, v_1, \ldots, v_{b-2}\}$ and with $E(G_3) = \{x_1v1, x_2v_2, x_3v_3, \ldots, x_av_a, x_av_{a+1}, \ldots, x_av_{b-3}, x_av_{b-2}\}$. Observe that $d_{G_3}(x_1) = \ldots = d_{G_3}(x_{a-1}) = d_{G_3}(v_1) = \ldots = d_{G_3}(v_{b-2}) = 1$ and $d_{G_3}(x_a) = b - a - 1$ (see fig. 1). Hence, in $K_{a,b} - E(G_3)$ the only two vertices of odd degree are v_{b-1} and v_b . This implies that there exists an open trail of length (ab - b + 2) in $K_{a,b}$. Obviously, in $K_{a,b}$ exists an open trail of length (b-2) but does not exists edge-disjoint decomposition of $K_{a,b}$ into open trail of lengths (b-2) and (ab - b + 2).

Sufficiency. Assume first that a = 1. It can be easily seen that $K_{1,b}$ is arbitrarily decomposable into open trails of length one and two.

From now on, let us assume that G is any complete bipartite graph $K_{a,b}$ such that a and b are even. Let $\tau = (t_1, ..., t_p)$ be a sequence of positive integers such that $\sum_{i=1}^p t_i = ab$ and $p \geq 2$. We show that there exists a τ -realization in $K_{a,b}$. We consider the following cases:

A. Let us suppose that t_i is even for each $i \in \{1, ..., p\}$. Case I. Assume now that t_i is not an even multiplicity of b for each $i \in \{1, ..., p\}$. Consider a sequence

$$V := (v_1, x_1, v_2, x_2, v_3, x_1, ..., x_1, v_b, x_2,$$

$$v_1, x_3, v_2, x_4, v_3, x_3, ..., x_3v_b, x_4, ..., v_1, x_{a-1}, ..., x_{a-1}, v_b, x_a, v_1$$
).

Clearly, this sequence of vertices creates an Eulerian trail in $K_{a,b}$. We show

Figure 2: Sequence V.

that we can part V into subsequences $V_1,...,V_p$ such that for each $i \in \{1,...,p\}$ the set of vertices in V_i induces an open trail T_i in $K_{a,b}$ of length t_i and $T_1,...,T_p$ are edge-disjoint subgraphs of $K_{a,b}$ (see fig 2).

Let us start at the following observation: let $W = (w_1, ..., w_k) \subset V$ be a subsequence of consecutive elements of V such that $w_1 = w_k = v_i$ for some $i \in \{1, ..., p\}$. The set of vertices in W induces a closed trail in $K_{a,b}$ of length $m \cdot b$ for some even $m \leq a$.

We will define subsequences $V_1,...,V_p$ of V. Let V_1 contain (t_1+1) first elements of V so it starts at v_1 and its next elements are the consecutive elements of V up to (t_1+1) -th element. Let us denote this element by v^2 . Observe that it belongs to B (obviously, it is different than v_1). Let V_2 start at v^2 and let it contains next (t_2+1) elements of sequence V. We denote the last element of V_2 by v^3 so $V_2 = (v^2, ..., v^3)$. In the similar way we can define the rest of subsequences $V_3, ..., V_p$. The last element of sequence V_i we will denote by v^{i+1} . It is easy to see that $v^i \in B$ for each $i \in \{2, ..., p\}$. Thus, a sequence V_i contains the consecutive elements of V, starts at some vertex in B and finishes at the other for each $i \in \{1, ..., p\}$. Hence, because of above

observation for each $i \in \{1, ..., p\}$ the set of vertices of V_i induces an open trail T_i of length t_i in G. Moreover, $T_1, ..., T_p$ are edge-disjoint subgraphs of G.

Case II. Let $t_1 = m_1 \cdot b, ..., t_l = m_l \cdot b$ for some $l \in \{1, ..., p\}$ and for some even integers $m_1, ..., m_l$. Suppose first that $l \geq 2$ and let $m := m_1 + ... + m_l$. Then, consider a sequences:

$$V' := (x_m, v_1, x_1, v_2, x_2, v_3, x_1, ..., x_1, v_b, x_2,$$

$$v_1, x_3, v_2, x_4, v_3, x_3, ..., x_3v_b, x_4, ..., v_1, x_{m-1}, ..., x_{m-1}, v_b, x_m)$$

and

$$V'' := (v_1, x_{m+1}, v_2, x_{m+2}, v_3, x_{m+1}, ..., x_{m+1}, v_b, x_{m+2}, ..., v_1, x_{a-1}, ..., x_{a-1}, v_b, x_a, v_1).$$

Figure 3: Sequence V'.

This sequences of vertices create edge-disjoint closed trails in G. Let G' be a subgraph of G induced by the set of vertices of V'. Hence V' is an Eulerian trail for G' which is a complete bipartite subgraph of G. Let us part V' into disjoint subsequences $V_1 := (x_m, ..., x_{m_1}), V_i := (x_{m_1 + ... + m_{i-1}}, ..., x_{m_1 + ... + m_i})$ for $i \in \{2, ..., l-1\}$ and $V_l := \{x_{m_1 + ... + m_{l-1}}, ..., x_m\}$. The sets of vertices of V_i induce edge-disjoint open trails $T_1, ..., T_l$ of lengths $t_1, ..., t_l$ (see fig. 3).

Let G'' be a graph induced by the set of vertices of V''. Observe that G'' is also a complete bipartite subgraph of G with two disjoint sets of vertices $C := A \setminus \{x_1, ..., x_m\}$ and B. The vertices of V'' induce an Eulerian trail for G'' so we can define the edge-disjoint open trails $T_{l+1},...,T_p$ of lengths

Figure 4: Sequence V''.

 $t_{l+1},...,t_p$ in G'' analogously as in case I (see fig 4). Obviously, $T_1,...,T_p$ are edge-disjoint open trails in G.

Let us assume now that l=1. Hence, $t_1=m\cdot b$ for some even integer m and t_i is not an even multiplicity of b for each $i\in\{2,...,p\}$. Let us consider a sequences V''' (see fig. 5) and V^{IV} (see fig. 6) such that:

$$V''' := (v_1, x_1, v_2, x_2, v_3, x_1, v_4, x_2, v_5 ..., x_{m-1}, v_b, x_a, v_{b-1})$$

and

$$V^{IV} := (v_{b-1}, x_{a-1}, v_{b-2}, x_a, v_{b-3}, x_{a-1}, v_{b-4}, x_a, ..., v_1, x_{a-1}, v_b$$

$$x_{a-2}, v_{b-1}, x_{a-3}, v_{b-2}, ..., x_{a-2}, v_1, x_{a-3}, v_b, ...$$

$$x_{m+2}, v_{b-1}, x_{m+1}, v_{b-2}, ..., x_{m+2}, v_1, x_{m+1}, v_b, x_m, v_1).$$

Observe that the vertices of V''' induce an open trail T_1 of length t_1 . Moreover, nearly each subsequence which contains consecutive vertices of V^{IV} and start and finish at the same vertex v_i for any $i \in \{1, ..., b\}$ induces a closed trail of length $k \cdot b$ for some even integer k. The only exception is the set of five last vertices $\{v_1, x_{m+1}, v_b, x_m, v_1\}$ which induces a closed trail of length four in G. Suppose now that there exists $j \in \{2, ..., p\}$ such that $t_j \neq 4$. Without loss of generality we can assume that $t_p \neq 4$. For such admissible sequence τ , applying analogous methods as in case I, we can define the open trails $T_2, ..., T_p$ of length $t_2, ..., t_p$ in G such that $T_1, ..., T_p$ are edge-disjoint subgraphs of G. Assume now that $t_i = 4$ for each $i \in \{2, ..., p\}$ and b > 4. The

Figure 5: Sequence V^{III} .

Figure 6: Sequence V^{IV} .

vertices of a sequence

$$V^{V} := (v_{2}, x_{2}, v_{3}, x_{1}, v_{4}, x_{2}, v_{5}, ..., x_{m-1}, v_{b}, x_{a}, v_{b-1}, x_{a-1}, v_{b-2})$$

induce an open trail of length t_1 in G. Consider a sequence

$$V^{VI} := (v_{b-2}, x_a, v_{b-3}, x_{a-1}, v_{b-4}, x_a, \dots)$$

$$v_1, x_{a-1}, v_b, x_{a-2}, v_{b-1}, x_{a-3}, v_{b-2}, ..., x_{m+1}, v_b, x_m, v_1, x_1, v_2$$
).

(see fig. 7 and 8) Let us part V^{VI} into (p-1) sets, each of them containing five consecutive elements of it. Then these sets induce edge-disjoint open trails of length four in G. A decomposition of $G = K_{4,4}$ into edge-disjoint

Figure 7: Sequence V^V .

Figure 8: Sequence V^{VI} .

open trails for $\tau = (8, 4, 4)$ we show in figure 9.

B. Suppose now that some of elements of τ are odd. Without loss of generality we can assume that $t_1,...,t_l$ are odd for some $l \leq p$ and $t_{l+1},...,t_p$ are even. Observe that l is even so there exists a positive number k such that l = 2k. Let us define $d_i := t_{2i-1} + t_{2i}$ for $i \in \{1,...,k\}$. Consider a sequence $\tau' := (d_1,...,d_k,t_{2k+1},...,t_p)$. Applying the same arguments as above G is decomposable into open trails $D_1,...,D_k,T_{2k+1},...,T_p$ of lengths $d_1,...,d_k,t_{2k+1},...,t_p$. It is easy to observe that each open trail D_j we can part into two edge-disjoint open trails T_{2j-1},T_{2j} of lengths t_{2j-1},t_{2j} . Hence, $T_1,...,T_p$ is a G-realization of τ and the proof is finished.

Figure 9: A decomposition of $K_{4,4}$ into edge-disjoint open trails for $\tau = (8,4,4)$.

Let us consider now a complete bipartite graphs $K_{a,a}$ for odd a. By the previous theorem such graphs are not arbitrarily decomposable into open trails but we can proof the following theorem:

Theorem 5 For any odd a a graph $K'_{a,a}$ is decomposable into open trails of lengths $t_1,...,t_p$ for each admissible sequence $\tau = (t_1,...,t_p)$.

Let G be a bipartite graph $K'_{a,a}$ with odd a. Observe that p > 1, because there is not exist an open trail of length $(a^2 - a)$ in $K'_{a,a}$. Let $A := \{x_1, ..., x_a\}$ and $B := \{v_1, ..., v_a\}$. Let I_a be the matching such that $x_i v_j \in I_a$ if and only if j = i. Let $\tau = (t_1, ..., t_p)$ be a sequence of positive integers such that $\sum_{i=1}^p t_i = a^2 - a$ and $p \ge 2$. The proof of this theorem is analogous to the proof of Theorem 4.

Let us suppose first that t_i is even for each $i \in \{1, ..., p\}$. We consider two cases:

Case I. Assume now that t_i is not an even multiplicity of a for each $i \in \{1,...,p\}$. Let us consider a sequence (see fig. 10)

$$U := (v_1, x_a, v_2, x_1, v_3, x_2, \dots, v_1, v_a, x_2, v_1, x_3, v_2, x_4, v_3, x_a, v_4, \dots, x_3, v_a, x_4, \dots, v_1, x_i, v_2, x_{i+1}, \dots, x_{i+1}, v_i, x_a, v_{i+1}, x_i, v_{i+2}, x_{i+1}, \dots, x_i, v_a, x_{i+1}, \dots, v_1, x_{a-2}, v_2, x_{a-1}, \dots, x_{a-1}, v_{a-2}, x_a, v_{a-1}, x_{a-2}, v_a, x_{a-1}).$$

This sequence of vertices creates an Eulerian trail in $K_{a,a} - I_a$. Let $W = (w_1, ..., w_k) \subset V$ be a subsequence of consecutive elements of U such that $w_1 = w_k = v_i$ for some $i \in \{1, ..., p\}$. The set of vertices in W induces a closed trail in $K_{a,a} - I_a$ of length $m \cdot a$ for some even $m \leq a$.

We will define subsequences $V_1,...,V_p$ of U analogously like in the proof of Theorem 4. So let V_1 contain $(t_1 + 1)$ first elements of U. Hence it starts at

Figure 10: Sequence U.

 v_1 and its next elements are the consecutive elements of U up to (t_1+1) -th element. Let us denote this element of B by v^2 . Let V_2 start at v^2 and let it contains next (t_2+1) elements of sequence U and so on. For each $i \in \{1,...,p\}$ the set of vertices of V_i induces an open trail T_i of length t_i in G and $T_1,...,T_p$ are edge-disjoint subgraphs of G.

Case II. Let $t_1 = m_1 \cdot a, ..., t_l = m_l \cdot a$ for some $l \in \{1, ..., p\}$ and for some even integers $m_1, ..., m_l$. Suppose first that $l \geq 2$ and let $m := m_1 + ... + m_l$. Then, consider a sequences

$$U' := (x_m, v_1, x_a, v_2, x_2, v_3, x_1, \dots, x_1, v_a, x_2, v_1, x_3, v_2, x_4, v_3, x_a, v_4, x_3, \dots, x_3, v_a, x_4, \dots, v_1, x_i, v_2, x_{i+1}, \dots, x_{i+1}, v_i, x_a, v_{i+1}, x_i, v_{i+2}, x_{i+1}, \dots, x_i, v_a, x_{i+1}, \dots, v_1, x_{m-1}, v_2, x_m, \dots, x_m, v_{m-1}, x_a, v_m, x_{m-1}, v_{m+1}, x_m, \dots, x_{m-1}, v_a, x_m)$$
 and
$$U'' := (v_1, x_{m+1}, v_2, x_{m+2}, v_3, x_{m+1}, \dots, x_{m+2}, v_{m+1}, x_a, v_{m+2}, x_{m+1}, v_{m+3}, x_{m+2}, \dots, x_{m+1}, v_a, x_{m+2}, \dots, v_1, x_i, v_2, x_{i+1}, \dots, x_{m+1}, v_{m+2}, x_{m+1}, v_{m+3}, x_{m+2}, \dots, x_{m+1}, v_{m+2}, x_{m+1}, v_{m+3}, x_{m+2}, \dots, x_{m+1}, v_{m+2}, x_{m+1}, x_{m+3}, x_{m+2}, \dots, x_{m+1}, v_{m+2}, x_{m+1}, x_{m+3}, x_{m+2}, \dots, x_{m+1}, x_{m+2}, x_{m+1}, x_{m+2}, x_{m+1}, x_{m+3}, x_{m+2}, \dots, x_{m+1}, x_{m+2}, x_{m+1}, x_{m+3}, x_{m+2}, \dots, x_{m+1}, x_{m+2}, x_{m+1}, x_{m+2}, x_{m+1}, x_{m+3}, x_{m+2}, \dots, x_{m+1}, x_{m+2}, x_{m+1}, x_{m+2}, x_{m+1}, x_{m+3}, x_{m+2}, \dots, x_{m+1}, x_{m+2}, x_{m+1}, x_{m+2}, x_{m+1}, \dots, x_{m+2}, x_{m+1}, x_{m+2}, x_{m+2}, \dots, x_{m+2}, x_{m+2}, x_{m+1}, \dots, x_{m+2}, x_{m+2}, x_{m+2}, \dots, x_{m+2}, x_{m+2}, x_{m+2}, x_{m+2}, \dots, x_{m+2}, x_{m+2}, x_{m+2}, x_{m+2}, x_{m+2}, x_{m+2}, \dots, x_{m+2}, x_$$

This sequences of vertices create edge-disjoint closed trails in G. Let G' be a subgraph of G induced by the set of vertices of U'. Hence U' is an Eulerian trail for G'. Let us part U' into disjoint subsequences $V_1 := (x_m, ..., x_{m_1}), V_i := (x_{m_1 + ... + m_{i-1}}, ..., x_{m_1 + ... + m_i})$ for $i \in \{2, ..., l-1\}$ and

Figure 11: Sequence U'.

Figure 12: Sequence U''.

 $V_l := \{x_{m_1+...+m_{l-1}},...,x_m\}$. The sets V_i create the sets of vertices of edge-disjoint open trails $T_1,...,T_l$ of lengths $t_1,...,t_l$ (see fig. 11).

Now, let G'' be a graph induced by the set of vertices of U''. Observe that G'' is a complete bipartite subgraph of G with two disjoint sets of vertices $C := A \setminus \{x_1, ..., x_m\}$ and B (see fig. 12). The vertices of U'' induce an Eulerian trail for G'' so we can define the edge-disjoint open trails $T_{l+1},...,T_p$ of lengths $t_{l+1},...,t_p$ in G''.

Let us assume now that l=1. Hence, $t_1=m\cdot a$ for some even integer m and t_i is not an even multiplicity of a for each $i\in\{2,...,p\}$. Let us consider a sequences

$$U''' := (v_1, x_a, v_2, x_2, v_3, x_1, v_4, x_2, v_5, \dots, x_{m-1}, v_a, x_{a-2}, v_{a-1})$$

and

$$U^{IV} := (v_{a-1}, x_a, v_{a-2}, x_{a-1}, v_{b-3}, \dots, v_1, x_{a-1}, v_a, \dots$$

$$x_{a-4}, v_{a-1}, x_{a-3}, v_{a-2}, x_{a-4}, v_{a-3}, x_a, v_{a-4}, x_{a-3}, v_{a-5}, \dots,$$

$$x_{m+1}, v_{a-1}, x_{m+2}, v_{a-2}, x_{m+1}, \dots, v_1, x_{m+2}, v_a, x_m, v_1).$$

Observe that the vertices of $U^{\prime\prime\prime}$ induce an open trail T_1 of length t_1 (see

Figure 13: Sequence U'''.

Figure 14: Sequence U^{IV} .

fig. 13). Moreover, nearly each subsequence which contains consecutive vertices of U^{IV} and start and finish at the same vertex v_i for any $i \in \{1, ..., b\}$ induces a closed trail of length $k \cdot a$ for some even integer k (see fig. 14). The only exception is the set of five last vertices $\{v_1, x_{m+2}, v_a, x_m, v_1\}$ which induces a closed trail of length four in G. Suppose that there exists $j \in \{2, ..., p\}$ such that $t_j \neq 4$. Without loss of generality we can assume that $t_p \neq 4$. For such admissible sequence τ we can define the open trails $T_2, ..., T_p$ of length $t_2, ..., t_p$ in G such that $T_1, ..., T_p$ are edge-disjoint subgraphs of G. Assume now that $t_i = 4$ for each $i \in \{2, ..., p\}$. The vertices of a sequence

$$U^{V} := (v_{2}, x_{1}, v_{3}, x_{2}, v_{4}, x_{1}, v_{5}, ..., x_{m-1}, v_{a}, x_{a-2}, v_{a-1}, x_{a}, v_{a-2})$$

induce an open trail of length t_1 in G (see fig. 15). Consider a sequence

$$U^{VI} := (v_{a-2}, x_{a-1}, v_{a-3}, x_{a-2}, v_{a-4}, \dots, x_{a-2}, v_1, x_{a-1}, v_a, x_{a-4}, v_{a-1}, x_{a-3}, v_{a-2}, x_{a-4}, v_{a-3}, \dots, x_{m+1}, v_1, x_{m+2}, v_a, x_m, v_1, x_a, v_2).$$

Let us part U^{VI} into (p-1) sets, each of them containing five consecutive

Figure 15: Sequence U^V .

elements of it. Then these sets induce edge-disjoint open trails of length four in G (see fig. 16).

Suppose now that some of elements of τ are odd. It is obvious that there are even number of odd elements in τ . Analogously like in Theorem 4 we can "glue" odd parts creating an element of even length. Hence the proof is finished.

Figure 16: Sequence U^{VI} .

References

- [1] Balister, P.N., Packing Circuits into K_n , Combin. Probab. Comput. **10** (2001) 463-499.
- [2] Balister, P.N., and B. Bollobàs, R.H. Schelp, Vertex distinguishing colorings of graphs with $\Delta(G) = 2$, Discrete Mathematics **252** (2002) 1729.
- [3] Cichacz, S., Decomposition of complete bipartite digraphs and even complete bipartite multigraphs into closed trails, Preprint MD 016 (2005), http://www.ii.uj.edu.pl/preMD/index.htm, submitted to Discussiones Mathaticae Graph Theory.
- [4] Horňák, M., and M. Woźniak, Decomposition of complete bipartite even graphs into closed trails, Czechoslovak Mathematical Journal, 128 (2003) 127-134.

Redaktorami serii preprintów Matematyka Dyskretna są: Wit FORYŚ, prowadzący seminarium *Słowa, słowa, słowa...* w Instytucie Informatyki UJ oraz

Mariusz WOŹNIAK,

prowadzący seminarium Matematyka Dyskretna - Teoria Grafów na Wydziale Matematyki Stosowanej AGH.