\& The Promise \& Challenge of Multidimensional Visualization

Alfred Inselberg
School of Mathematical Sciences
Tel Aviv University
Tel Aviv, Israel
aiisreal@post.tau.ac.il * www.cs.tau.ac.il/ ~aiisreal

\mathscr{T} he fascination with "dimensionality" predates even Aristotle. Since the nineteenth century advances in Science and Mathematics unshackled our imagination with higher-dimensional geometries and multidimensional(multivariate) problems. These can now be visualized with a system of Parallel Coordinates. The perceptual barrier imposed by our 3-dimensional habitation has been breached.

We describe how this visualization works and demonstrate some of its applications: in air traffic control (3 patents - collision avoidance), data exploration (patent - example: discovering banks' manipulation of gold market), modeling complex relations (example: interactive visual model of a country's economy), and new representation of surfaces preferable even for some 3-dimensional applications. Results are first discovered visually and then proven mathematically; in the true spirit of Geometry. Our 3-dimensional experience is now the laboratory for insights into complex high-dimensional situations.
A. Inselberg, "Parallel Coordinates: Visual Multidimensional Geometry and its Applications", Springer New York, 2009. This book was praised by Stephen Hawking among others.

EYE-CANDY

Figure 1: Exploratory Data Analysis, ground emissions measured by satellite on a region of Slovenia, on the left, are displayed on the right. In the middle, water (in blue) and the lake's edge (in green) are discovered by the indicated queries.

Figure 2: Detecting Network Intrusion from Internet Traffic Flow Data. The server with IP address on the first axis (left) is "bombarding" other servers (IP address on 2nd axis) and starting a chain reaction "botnet".

Figure 3: (left) The polygonal lines on the first 3 axes represent a randomly chosen set of coplanar points. There is no discernible pattern. (right) Seeing coplanarity! Two points represent a line on the plane and are determined from the intersection of two polygonal lines. The straight lines joining the pairs of points intersect. That is in $\|$-coords a plane is not recognized from (the representation of) its points but from (the representation) of its lines (right). The recursive visualization generalizes to any dimension.

Figure 4: In the background is a dataset with 32 variables and 2 categories. On the left is the plot of the first two variables in the original order and on right the best two variables after classification. The algorithms discovers the best 9 variables (features) needed to describe the rule, with 4% error, and orders them according to their predictive power.
(a)

(a)

(b)

(c)

(b)

(c)

Figure 5: Square, cube and hypercube in 5-D on the left represented by their vertices and on the right by the tangent planes. Note the hyperbola-like (with 2 assymptotes) regions showing that the object is convex.

Figure 6: In 3-D a surface σ is represented by two linked planar regions $\bar{\sigma}_{123}$, $\bar{\sigma}_{231^{\prime}}$. They consist of the pairs of points representing all its tangent planes. In N-dimensions a hypersurface is represented by $(N-1)$ regions as the hypercube above.

Figure 7: Developable surfaces are represented by curves. Note the two dualities line of cusps line \leftrightarrow inflection points and bitangent plane \leftrightarrow crossing point. Three such curves represent the corresponding hypersurface in 4-D and so on.

Figure 8: Representation of a sphere centered at the origin (left) and after a translation along the x_{1} axis (right) causing the two hyperbolas to rotate in opposite directions. Note the rotation \leftrightarrow translation duality. In N-D a sphere is represented by $(N-1)$ such hyperbolic regions - pattern repeats as for hypercube above.

Figure 9: Möbius strip and its representation for two orientations. The two cusps on the left show that it has an "inflection-point in 3-D" (twist)- opposite direction of duality in Fig 7

Figure 10: Representation of a surface with 2 "dimples" (depressions with cusp) which are mapped into a pair of "swirls" and are all visible. By contrast, in the perspective (left) one dimple is hidden. Convex objects in any dimension are represented by hyperbola-like regions. On the right is a convex surface in 3-D and its representation.

Figure 11: Interior point (polygonal line) construction algorithm shown for a convex hypersurface in $20-\mathrm{D}$. A polygonal line touching any of the intermediate curves represents a point on the surface, and if it intersects one of the curves it represents an exterior point. This pattern represents a relation, such as in a process, among the 20 variables and the polygonal line a feasible state. The narrowest ranges for $X 13, X 14, X 15$ show that these are the critical variables - closest to boundary.

