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T he fascination with “dimensionality” predates even Aristotle. Since the nineteenth century advances
in Science and Mathematics unshackled our imagination withhigher-dimensional geometries and multi-
dimensional(multivariate) problems. These can now bevisualizedwith a system ofParallel Coordinates.
Theperceptualbarrier imposed by our 3-dimensional habitation has been breached.

We describe how this visualization works and demonstrate some of its applications: in air traffic control
(3 patents - collision avoidance), data exploration (patent - example: discovering banks’ manipulation of
gold market), modeling complex relations (example: interactive visual model of a country’s economy),
and new representation of surfaces preferable even for some3-dimensional applications. Results are first
discoveredvisually and then proven mathematically; in the true spirit of Geometry. Our 3-dimensional
experience is now the laboratory for insights into complex high-dimensional situations.

••••••

A. Inselberg, “Parallel Coordinates: Visual Multidimensional Geometry and its Applications”,
Springer New York, 2009. This book was praised byStephen Hawkingamong others.
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EYE-CANDY

Figure 1: Exploratory Data Analysis, ground emissions measured by satellite on a region of Slovenia,
on the left, are displayed on the right. In the middle, water (in blue) and the lake’s edge (in green) are
discovered by the indicated queries.

Figure 2: Detecting Network Intrusion from Internet TrafficFlow Data. The server with IP address on
the first axis (left) is “bombarding” other servers (IP address on 2nd axis) and starting a chain reaction
“botnet”.
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Figure 3: (left) The polygonal lines on the first 3 axes represent a randomly chosen set of coplanar points.
There is no discernible pattern. (right) Seeing coplanarity! Two points represent a line on the plane and
are determined from the intersection of two polygonal lines. The straight lines joining the pairs of points
intersect. That is in‖-coords a plane is not recognized from (the representation of) its points but from (the
representation) of its lines (right). Therecursivevisualization generalizes to any dimension.

Figure 4: In the background is a dataset with 32 variables and2 categories. On the left is the plot of
the first two variables in the original order and on right the best two variables after classification. The
algorithms discovers the best 9 variables (features) needed to describe the rule, with 4% error, and orders
them according to their predictive power.
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Figure 5: Square, cube and hypercube in 5-D on the left represented by their vertices and on the right
by the tangent planes. Note the hyperbola-like (with 2 assymptotes) regions showing that the object is
convex.
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Figure 6: In 3-D a surfaceσ is represented by two linked planar regionsσ̄123 , σ̄231′ . They consist of
the pairs of points representing all its tangent planes. InN-dimensions a hypersurface is represented by
(N−1) regions as the hypercube above.
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Figure 7: Developable surfaces are represented by curves. Note the two dualitiesline of cusps line↔
inflection pointsandbitangent plane↔ crossing point. Three such curves represent the corresponding
hypersurface in 4-D and so on.

Figure 8: Representation of a sphere centered at the origin (left) and after a translation along thex1 axis
(right) causing the two hyperbolas to rotate in opposite directions. Note therotation↔ translationduality.
In N-D a sphere is represented by(N− 1) such hyperbolic regions — pattern repeats as for hypercube
above.
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Figure 9: Möbius strip and its representation for two orientations. The two cusps on the left show that it
has an “inflection-point in 3-D” (twist)– opposite direction of duality in Fig 7

.

Figure 10: Representation of a surface with 2 “dimples” (depressions with cusp) which are mapped into
a pair of “swirls” and areall visible. By contrast, in the perspective (left) one dimple is hidden. Convex
objects inany dimension are represented by hyperbola-like regions. On the right is a convex surface in
3-D and its representation.
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Figure 11: Interior point (polygonal line) construction algorithm shown for a convex hypersur-
face in 20 - D. A polygonal line touching any of the intermediate curves represents a point on the surface,
and if it intersects one of the curves it represents an exterior point. This pattern represents a relation, such
as in a process, among the 20 variables and the polygonal linea feasible state. The narrowest ranges for
X13,X14,X15 show that these are the critical variables – closest to boundary.
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