Linear bound on the irregularity strength and the total irregularity strength of graphs

Jakub Przybyło*

AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

March 3, 2008

Abstract

Let G be a simple graph of order n with no isolated edges and at most one isolated vertex. For a positive integer w, a w-weighting of G is a map $f : E(G) \to \{1, 2, ..., w\}$. An irregularity strength of G, s(G), is the smallest w such that there is a w-weighting of G for which $\sum_{e:u \in e} f(e) \neq \sum_{e:v \in e} f(e)$ for all pairs of different vertices $u, v \in V(G)$. A tight result by Nierhoff says that $s(G) \leq n-1$. We show a new general upper bound, which is linear in n/δ , hence better starting from a given δ upwards. In the case of the d-regular graphs, we obtain a better linear function of n/d as an upper bound on s(G), which corresponds with the conjecture by Faudree and Lehel that $s(G) \leq n/d + c$ for some absolute constant c. The recently introduced total version of the problem is also discussed and supported by a number of new bounds, also linear in n/δ .

Keywords: irregularity strength, total irregularity strength, graph weighting, graph labelling MSC: 05C78

^{*}E-mail: przybylo@wms.mat.agh.edu.pl