Irregularity strength of regular graphs

Jakub Przybyło*

AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

March 3, 2008

Abstract

Let G be a simple graph with no isolated edges and at most one isolated vertex. For a positive integer w, a w-weighting of G is a map $f : E(G) \to \{1, 2, \ldots, w\}$. An irregularity strength of G, s(G), is the smallest w such that there is a w-weighting of G for which $\sum_{e:u \in e} f(e) \neq \sum_{e:v \in e} f(e)$ for all pairs of different vertices $u, v \in V(G)$. A conjecture by Faudree and Lehel says that there is a constant c such that $s(G) \leq \frac{n}{d} + c$ for each d-regular graph G, $d \geq 2$. We show that it is true in the following form $s(G) \leq c_1 \frac{n}{d} + c_2$, where $c_1 = 16$ and $c_2 = 6$. Consequently, we improve the results by Frieze, Gould, Karoński and Pfender (in some cases by a log n factor) in this area, as well as the recent result by Cuckler and Lazebnik.

Keywords: irregularity strength, graph weighting, regular graph

^{*}E-mail: przybylo@wms.mat.agh.edu.pl