
MATEMATYKA
DYSKRETNA
www.ii.uj.edu.pl/preMD/

Mariusz WOŹNIAK
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Abstract

Let Cn be a cycle of order n. It is well known that if n ≥ 5 then

there is an embedding of Cn into its complement Cn. In this note we

consider a problem concerning the uniqueness of such an embedding.

1 Introduction

We shall use standard graph theory notation. We consider only finite, undi-
rected graphs of order n = |V (G)| and size e(G) = |E(G)|. All graphs will
be assumed to have neither loops nor multiple edges.

We shall need some additional definitions in order to formulate the results.
If a graph G has order n and size m, we say that G is an (n, m) graph.

Assume now that G1 and G2 are two graphs with disjoint vertex sets. The
union G = G1∪G2 has V (G) = V (G1)∪V (G2) and E(G) = E(G1)∪E(G2).
If a graph is the union of n (≥ 2) disjoint copies of a graph H , then we write
G = nH .

∗The research partially supported by the Polish Ministry of Science and Higher Edu-

cation
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For our next operation, the conditions are quite different. Let now G1

and G2 be graphs with V (G1) = V (G2) and E(G1) ∩ E(G2) = ∅. The edge
sum G1 ⊕ G2 has V (G) = V (G1) = V (G2) and E(G) = E(G1) ∪ E(G2).

An embedding of G (in its complement G) is a permutation σ on V (G)
such that if an edge xy belongs to E(G), then σ(x)σ(y) does not belong to
E(G).

In others words, an embedding is an (edge-disjoint) placement (or packing)
of two copies of G into a complete graph Kn.

The following theorem was proved, independently, in [1], [2] and [5].

Theorem 1 Let G = (V, E) be a graph of order n. If |E(G)| ≤ n − 2 then
G can be embedded in its complement G.

The example of the star K1,n−1 shows that Theorem 1 cannot be improved
by raising the size of G. However if a tree is not a star then it is embeddable.
This fact was first observed by H.J.Straight [ unpublished]. The version given
below comes from [7].

Theorem 2 Let T be a non-star tree. Then there exists a cyclic permutation
on V (T ) being an embedding of T .

Let us consider now the problem of the uniqueness. First, we have to
precise what we mean by distinct embeddings.

Let σ be an embedding of the graph G = (V, E). We denote by σ(G)
the graph with the vertex set V and the edge set σ∗(E) where the map σ∗

is induced by σ. Since, by definition of an embedding, the sets E and σ∗(E)
are disjoint we may form the graph G ⊕ σ(G).

Two embeddings σ1, σ1 of a graph G are said to be distinct if the graphs
G ⊕ σ1(G) and G ⊕ σ2(G) are not isomorphic. A graph G is called uniquely
embeddable if for all embeddings σ of G, all graphs G⊕σ(G) are isomorphic.

The next theorem, proved in [8], characterizes all (n, n − 2) graphs that
are uniquely embeddable.

Theorem 3 Let G be a graph of order n and size e(G) = n−2. Then either
G is not uniquely embeddable or G is isomorphic to one of the seven following
graphs (see also Fig. 1): K2 ∪K1, 2K2, K3 ∪ 2K1, K3 ∪K2 ∪K1, C4 ∪ 2K1,
K3 ∪ 2K2, 2K3 ∪ 2K1.

2



u u

u u

u u

u u

u u

u u

u u

u u

u u

u u

u
��@@

u u

u

�
�
�

A
A

A

u u

u

�
�
�

A
A

A

u u

u

�
�
�

A
A

A

u u

u

�
�
�

A
A

A

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

���H
HH

u

u

u

���H
HH

u

u

u

���H
HH

u

u

u

HHH�
��

u

u

u

HHH�
��

u

u

u

HHH�
��

u

u

u

HHH�
��

u

u

u

HHH

���

u

u

u

u

�
�

�
�

@
@

@
@

u

u

u

u

�
�

�
�

@
@

@
@

�
�

�@
@

@u

u

u�
�
�

A
A

A

n = 8

n = 7

n = 6

n = 6

n = 5

n = 4

n = 3

|V (G)| G G
⊕

σ(G)

Figure 1: Uniquely embeddable (n, n − 2)-graphs

3



The aim of this note is to consider the problem for cycles. We have the
following

Theorem 4 Let Cn be a cycle of order n. The cycles C3 and C4 are not
embeddable. The cycles C5 and C5 are uniquely embeddable. For n ≥ 7 there
exist at least two distinct embeddins of Cn.

The proof of Theorem 4 is given in the next section.

Remark. The main references of the paper and of other packing prob-
lems are the following survey papers [11], [9] or [10].

2 Proof of Theorem 5

It is easy to see that neither C3 nor C4 is embeddable.
The cycle C5 is embeddable but for each embedding σ we have C5 ⊕

σ(C5) = K5. So, C5 is uniquely embeddable.
The cycle C6 is also embeddable. For each embedding σ the graph C6 ⊕

σ(C6) is a 4-regular subgraph of K6. The complement of such a graph is a
1-factor in K6. Thus, all these graphs are isomorphic. So, C6 is uniquely
embeddable.

Two distinct embeddings of C7 are given in Figure 2. In the first one, the
complement of the graph Cn ⊕σ(Cn) is isomorphic to C7 while in the second
one, to C3 ∪ C4.

For n ≥ 8 we shall show that there are at least two distinct embeddings
of Cn:

A) One such that the graph Cn ⊕ σ(Cn) contains a clique K4 and
B) another one such that the graph Cn ⊕ σ(Cn) is K4-free.

Case A.

Denote by x, a1, a2, a3, a4, y six consecutive vertices of Cn and by P

the path joining x and y obtained from Cn by removing the vertices
{a1, a2, a3, a4}. Since n ≥ 8, P has at least four vertices. By Theorem 2,
there is a cyclic permutation, say σ′ being an embedding of P . Let x′ = σ′(x)
and y′ = σ′(y). Figure 3 shows how to extend σ′ to get an embedding of Cn.
Let us observe that the vertices {a1, a2, a3, a4} induce a clique K4.
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Figure 2: Two distinct embeddings of C7

Case B. Denote by v1, v2, v3, . . . , vn consecutive vertices of Cn. We shall
consider two cases.

Subcase B1. n is odd.
Then, the edges vivi+2 (mod n) define a cycle of length n. This cycle

can be considered as an image of Cn by a permutation, say σ. We shall
show that the graph H = Cn ⊕ σ(Cn) is K4-free. Suppose that H contains
a clique on four vertices. It has six edges and it is easy to see that three of
them should belong to the first copy of Cn and the remaining three to the
second copy of Cn, each of these triples forming a path of length three in the
corresponding copy. But a path of length three in Cn should be induced by
four consecutive vertices vi, vi+1, vi+2, vi+3 (mod n). The fact that vi, vi+3

is not an edge of the second (dashed) copy of Cn finishes the proof of this
case.

Subcase B2. n is even.
It is easy to see that the edges of the form vivi+r (mod n) define a cycle

of length n if r and n are coprime. In order to prove the existence of such
an integer rwe can use, for instance, the well-known Chebyshev’s theorem
saying that for each integer k ≥ 4 there is a prime number between k and
2k − 2. Denote by p such a number where k = n

2
and put r = n− p. Since a

prime numer p and n are surely coprime, r and n are also coprime. Moreover,
we have 3 ≤ r ≤ n

2
− 1. Similarly as above, it is easy to see that the graph

formed by Cn and the edges of the form vivi+r (mod n) is K4-free. This
finishes the proof.
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[8] M.Woźniak, A note on uniquely embeddable graphs, Discussiones
Mathematicae-Graph Theory, 18 (1998), 15-21.
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