A note on uniquely embeddable cycles

Preprint Nr MD 047
(otrzymany dnia 11.12.2010)

Kraków 2010

Redaktorami serii preprintów Matematyka Dyskretna są: Wit FORYŚ, prowadzący seminarium Stowa, stowa, stowa... w Instytucie Informatyki UJ
oraz
Mariusz WOŹNIAK, prowadzący seminarium Matematyka Dyskretna - Teoria Grafów na Wydziale Matematyki Stosowanej AGH.

A note
 on uniquely embeddable cycles

Mariusz Woźniak*
AGH University of Science and Technology
Faculty of Applied Mathematics
Al. Mickiewicza 30
30 - 059 Kraków, Poland

December 11, 2010

Abstract

Let C_{n} be a cycle of order n. It is well known that if $n \geq 5$ then there is an embedding of C_{n} into its complement $\overline{C_{n}}$. In this note we consider a problem concerning the uniqueness of such an embedding.

1 Introduction

We shall use standard graph theory notation. We consider only finite, undirected graphs of order $n=|V(G)|$ and size $e(G)=|E(G)|$. All graphs will be assumed to have neither loops nor multiple edges.

We shall need some additional definitions in order to formulate the results. If a graph G has order n and size m, we say that G is an (n, m) graph.

Assume now that G_{1} and G_{2} are two graphs with disjoint vertex sets. The union $G=G_{1} \cup G_{2}$ has $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. If a graph is the union of $n(\geq 2)$ disjoint copies of a graph H, then we write $G=n H$.

[^0]For our next operation, the conditions are quite different. Let now G_{1} and G_{2} be graphs with $V\left(G_{1}\right)=V\left(G_{2}\right)$ and $E\left(G_{1}\right) \cap E\left(G_{2}\right)=\emptyset$. The edge $\operatorname{sum} G_{1} \oplus G_{2}$ has $V(G)=V\left(G_{1}\right)=V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

An embedding of G (in its complement \bar{G}) is a permutation σ on $V(G)$ such that if an edge $x y$ belongs to $E(G)$, then $\sigma(x) \sigma(y)$ does not belong to $E(G)$.

In others words, an embedding is an (edge-disjoint) placement (or packing) of two copies of G into a complete graph K_{n}.

The following theorem was proved, independently, in [1], [2] and [5].
Theorem 1 Let $G=(V, E)$ be a graph of order n. If $|E(G)| \leq n-2$ then G can be embedded in its complement \bar{G}.

The example of the star $K_{1, n-1}$ shows that Theorem 1 cannot be improved by raising the size of G. However if a tree is not a star then it is embeddable. This fact was first observed by H.J.Straight [unpublished]. The version given below comes from [7].

Theorem 2 Let T be a non-star tree. Then there exists a cyclic permutation on $V(T)$ being an embedding of T.

Let us consider now the problem of the uniqueness. First, we have to precise what we mean by distinct embeddings.

Let σ be an embedding of the graph $G=(V, E)$. We denote by $\sigma(G)$ the graph with the vertex set V and the edge set $\sigma^{*}(E)$ where the map σ^{*} is induced by σ. Since, by definition of an embedding, the sets E and $\sigma^{*}(E)$ are disjoint we may form the graph $G \oplus \sigma(G)$.

Two embeddings σ_{1}, σ_{1} of a graph G are said to be distinct if the graphs $G \oplus \sigma_{1}(G)$ and $G \oplus \sigma_{2}(G)$ are not isomorphic. A graph G is called uniquely embeddable if for all embeddings σ of G, all graphs $G \oplus \sigma(G)$ are isomorphic.

The next theorem, proved in [8], characterizes all $(n, n-2)$ graphs that are uniquely embeddable.

Theorem 3 Let G be a graph of order n and size $e(G)=n-2$. Then either G is not uniquely embeddable or G is isomorphic to one of the seven following graphs (see also Fig. 1): $K_{2} \cup K_{1}, 2 K_{2}, K_{3} \cup 2 K_{1}, K_{3} \cup K_{2} \cup K_{1}, C_{4} \cup 2 K_{1}$, $K_{3} \cup 2 K_{2}, 2 K_{3} \cup 2 K_{1}$.
$|V(G)|$

Figure 1: Uniquely embeddable ($n, n-2$)-graphs

The aim of this note is to consider the problem for cycles. We have the following

Theorem 4 Let C_{n} be a cycle of order n. The cycles C_{3} and C_{4} are not embeddable. The cycles C_{5} and C_{5} are uniquely embeddable. For $n \geq 7$ there exist at least two distinct embeddins of C_{n}.

The proof of Theorem 4 is given in the next section.
Remark. The main references of the paper and of other packing problems are the following survey papers [11], [9] or [10].

2 Proof of Theorem 5

It is easy to see that neither C_{3} nor C_{4} is embeddable.
The cycle C_{5} is embeddable but for each embedding σ we have $C_{5} \oplus$ $\sigma\left(C_{5}\right)=K_{5}$. So, C_{5} is uniquely embeddable.

The cycle C_{6} is also embeddable. For each embedding σ the graph $C_{6} \oplus$ $\sigma\left(C_{6}\right)$ is a 4 -regular subgraph of K_{6}. The complement of such a graph is a 1-factor in K_{6}. Thus, all these graphs are isomorphic. So, C_{6} is uniquely embeddable.

Two distinct embeddings of C_{7} are given in Figure 2. In the first one, the complement of the graph $C_{n} \oplus \sigma\left(C_{n}\right)$ is isomorphic to C_{7} while in the second one, to $C_{3} \cup C_{4}$.

For $n \geq 8$ we shall show that there are at least two distinct embeddings of C_{n} :
A) One such that the graph $C_{n} \oplus \sigma\left(C_{n}\right)$ contains a clique K_{4} and
B) another one such that the graph $C_{n} \oplus \sigma\left(C_{n}\right)$ is K_{4}-free.

Case A.

Denote by $x, a_{1}, a_{2}, a_{3}, a_{4}, y$ six consecutive vertices of C_{n} and by P the path joining x and y obtained from C_{n} by removing the vertices $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Since $n \geq 8, P$ has at least four vertices. By Theorem 2, there is a cyclic permutation, say σ^{\prime} being an embedding of P. Let $x^{\prime}=\sigma^{\prime}(x)$ and $y^{\prime}=\sigma^{\prime}(y)$. Figure 3 shows how to extend σ^{\prime} to get an embedding of C_{n}. Let us observe that the vertices $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ induce a clique K_{4}.

Figure 2: Two distinct embeddings of C_{7}

Case B. Denote by $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ consecutive vertices of C_{n}. We shall consider two cases.

Subcase B1. n is odd.
Then, the edges $v_{i} v_{i+2} \quad(\bmod n)$ define a cycle of length n. This cycle can be considered as an image of C_{n} by a permutation, say σ. We shall show that the graph $H=C_{n} \oplus \sigma\left(C_{n}\right)$ is K_{4}-free. Suppose that H contains a clique on four vertices. It has six edges and it is easy to see that three of them should belong to the first copy of C_{n} and the remaining three to the second copy of C_{n}, each of these triples forming a path of length three in the corresponding copy. But a path of length three in C_{n} should be induced by four consecutive vertices $v_{i}, v_{i+1}, v_{i+2}, v_{i+3}(\bmod n)$. The fact that v_{i}, v_{i+3} is not an edge of the second (dashed) copy of C_{n} finishes the proof of this case.

Subcase B2. n is even.
It is easy to see that the edges of the form $v_{i} v_{i+r}(\bmod n)$ define a cycle of length n if r and n are coprime. In order to prove the existence of such an integer r we can use, for instance, the well-known Chebyshev's theorem saying that for each integer $k \geq 4$ there is a prime number between k and $2 k-2$. Denote by p such a number where $k=\frac{n}{2}$ and put $r=n-p$. Since a prime numer p and n are surely coprime, r and n are also coprime. Moreover, we have $3 \leq r \leq \frac{n}{2}-1$. Similarly as above, it is easy to see that the graph formed by C_{n} and the edges of the form $v_{i} v_{i+r}(\bmod n)$ is K_{4}-free. This finishes the proof.

Figure 3: Case A

References

[1] B.BollobÁs and S.E.Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory B 25 (1978), 105-124.
[2] D.Burns and S.Schuster, Every $(p, p-2)$ graph is contained in its complement, J. Graph Theory 1 (1977), 277-279.
[3] D.Burns and S.Schuster, Embedding $(n, n-1)$ graphs in their complements, Israel J. Math. 30 (1978), 313-320.
[4] B.Ganter, J.Pelikan and L.Teirlinck, Small sprawling systems of equicardinal sets, Ars Combinatoria 4 (1977), 133-142.
[5] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978), 295-302.
[6] M.Woźniak, Embedding graphs of small size, Discrete Applied Math. 51 (1994), 233-241.
[7] M.Woźniak, Packing three trees, in Discrete Math. 150 (1996), 393402.
[8] M.Woźniak, A note on uniquely embeddable graphs, Discussiones Mathematicae-Graph Theory, 18 (1998), 15-21.
[9] M.Woźniak, Packing of graphs - some recent results and trends, Studies, Math. Series 16 (2003), 115-120.
[10] M.Woźniak, Packing of graphs and permutation - a survey, Discrete Math. 276 (2004), 379-391.
[11] H.P.Yap, Packing of graphs - a survey, Discrete Math. 72 (1988), 395-404.

[^0]: ${ }^{*}$ The research partially supported by the Polish Ministry of Science and Higher Education

