# MATEMATYKA DYSKRETNA www.ii.uj.edu.pl/preMD/

## Mariusz WOŹNIAK

# $A \ note$ on uniquely embeddable cycles

Preprint Nr MD 047 (otrzymany dnia 11.12.2010)

> Kraków 2010

Redaktorami serii preprintów Matematyka Dyskretna są: Wit FORYŚ, prowadzący seminarium *Słowa, słowa, słowa...* w Instytucie Informatyki UJ oraz Mariusz WOŹNIAK, prowadzący seminarium *Matematyka Dyskretna - Teoria Grafów* na Wydziale Matematyki Stosowanej AGH.

## A note on uniquely embeddable cycles

Mariusz Woźniak<sup>\*</sup> AGH University of Science and Technology Faculty of Applied Mathematics Al. Mickiewicza 30 30 – 059 Kraków, Poland

December 11, 2010

### Abstract

Let  $C_n$  be a cycle of order n. It is well known that if  $n \ge 5$  then there is an embedding of  $C_n$  into its complement  $\overline{C_n}$ . In this note we consider a problem concerning the uniqueness of such an embedding.

## 1 Introduction

We shall use standard graph theory notation. We consider only finite, undirected graphs of order n = |V(G)| and size e(G) = |E(G)|. All graphs will be assumed to have neither loops nor multiple edges.

We shall need some additional definitions in order to formulate the results. If a graph G has order n and size m, we say that G is an (n, m) graph.

Assume now that  $G_1$  and  $G_2$  are two graphs with disjoint vertex sets. The union  $G = G_1 \cup G_2$  has  $V(G) = V(G_1) \cup V(G_2)$  and  $E(G) = E(G_1) \cup E(G_2)$ . If a graph is the union of  $n \geq 2$  disjoint copies of a graph H, then we write G = nH.

<sup>\*</sup>The research partially supported by the Polish Ministry of Science and Higher Education

For our next operation, the conditions are quite different. Let now  $G_1$ and  $G_2$  be graphs with  $V(G_1) = V(G_2)$  and  $E(G_1) \cap E(G_2) = \emptyset$ . The *edge* sum  $G_1 \oplus G_2$  has  $V(G) = V(G_1) = V(G_2)$  and  $E(G) = E(G_1) \cup E(G_2)$ .

An embedding of G (in its complement  $\overline{G}$ ) is a permutation  $\sigma$  on V(G) such that if an edge xy belongs to E(G), then  $\sigma(x)\sigma(y)$  does not belong to E(G).

In others words, an embedding is an (edge-disjoint) placement (or packing) of two copies of G into a complete graph  $K_n$ .

The following theorem was proved, independently, in [1], [2] and [5].

**Theorem 1** Let G = (V, E) be a graph of order n. If  $|E(G)| \le n - 2$  then G can be embedded in its complement  $\overline{G}$ .

The example of the star  $K_{1,n-1}$  shows that Theorem 1 cannot be improved by raising the size of G. However if a tree is not a star then it is embeddable. This fact was first observed by H.J.Straight [unpublished]. The version given below comes from [7].

**Theorem 2** Let T be a non-star tree. Then there exists a cyclic permutation on V(T) being an embedding of T.

Let us consider now the problem of the uniqueness. First, we have to precise what we mean by *distinct* embeddings.

Let  $\sigma$  be an embedding of the graph G = (V, E). We denote by  $\sigma(G)$ the graph with the vertex set V and the edge set  $\sigma^*(E)$  where the map  $\sigma^*$ is induced by  $\sigma$ . Since, by definition of an embedding, the sets E and  $\sigma^*(E)$ are disjoint we may form the graph  $G \oplus \sigma(G)$ .

Two embeddings  $\sigma_1$ ,  $\sigma_1$  of a graph G are said to be *distinct* if the graphs  $G \oplus \sigma_1(G)$  and  $G \oplus \sigma_2(G)$  are not isomorphic. A graph G is called *uniquely embeddable* if for all embeddings  $\sigma$  of G, all graphs  $G \oplus \sigma(G)$  are isomorphic.

The next theorem, proved in [8], characterizes all (n, n-2) graphs that are uniquely embeddable.

**Theorem 3** Let G be a graph of order n and size e(G) = n - 2. Then either G is not uniquely embeddable or G is isomorphic to one of the seven following graphs (see also Fig. 1):  $K_2 \cup K_1$ ,  $2K_2$ ,  $K_3 \cup 2K_1$ ,  $K_3 \cup K_2 \cup K_1$ ,  $C_4 \cup 2K_1$ ,  $K_3 \cup 2K_2$ ,  $2K_3 \cup 2K_1$ .



Figure 1: Uniquely embeddable (n, n-2)-graphs

The aim of this note is to consider the problem for cycles. We have the following

**Theorem 4** Let  $C_n$  be a cycle of order n. The cycles  $C_3$  and  $C_4$  are not embeddable. The cycles  $C_5$  and  $C_5$  are uniquely embeddable. For  $n \ge 7$  there exist at least two distinct embeddins of  $C_n$ .

The proof of Theorem 4 is given in the next section.

**Remark.** The main references of the paper and of other packing problems are the following survey papers [11], [9] or [10].

### 2 Proof of Theorem 5

It is easy to see that neither  $C_3$  nor  $C_4$  is embeddable.

The cycle  $C_5$  is embeddable but for each embedding  $\sigma$  we have  $C_5 \oplus \sigma(C_5) = K_5$ . So,  $C_5$  is uniquely embeddable.

The cycle  $C_6$  is also embeddable. For each embedding  $\sigma$  the graph  $C_6 \oplus \sigma(C_6)$  is a 4-regular subgraph of  $K_6$ . The complement of such a graph is a 1-factor in  $K_6$ . Thus, all these graphs are isomorphic. So,  $C_6$  is uniquely embeddable.

Two distinct embeddings of  $C_7$  are given in Figure 2. In the first one, the complement of the graph  $C_n \oplus \sigma(C_n)$  is isomorphic to  $C_7$  while in the second one, to  $C_3 \cup C_4$ .

For  $n \ge 8$  we shall show that there are at least two distinct embeddings of  $C_n$ :

A) One such that the graph  $C_n \oplus \sigma(C_n)$  contains a clique  $K_4$  and

B) another one such that the graph  $C_n \oplus \sigma(C_n)$  is  $K_4$ -free.

#### Case A.

Denote by  $x, a_1, a_2, a_3, a_4, y$  six consecutive vertices of  $C_n$  and by Pthe path joining x and y obtained from  $C_n$  by removing the vertices  $\{a_1, a_2, a_3, a_4\}$ . Since  $n \ge 8$ , P has at least four vertices. By Theorem 2, there is a cyclic permutation, say  $\sigma'$  being an embedding of P. Let  $x' = \sigma'(x)$ and  $y' = \sigma'(y)$ . Figure 3 shows how to extend  $\sigma'$  to get an embedding of  $C_n$ . Let us observe that the vertices  $\{a_1, a_2, a_3, a_4\}$  induce a clique  $K_4$ .



Figure 2: Two distinct embeddings of  $C_7$ 

**Case B.** Denote by  $v_1, v_2, v_3, \ldots, v_n$  consecutive vertices of  $C_n$ . We shall consider two cases.

#### Subcase B1. n is odd.

Then, the edges  $v_i v_{i+2} \pmod{n}$  define a cycle of length n. This cycle can be considered as an image of  $C_n$  by a permutation, say  $\sigma$ . We shall show that the graph  $H = C_n \oplus \sigma(C_n)$  is  $K_4$ -free. Suppose that H contains a clique on four vertices. It has six edges and it is easy to see that three of them should belong to the first copy of  $C_n$  and the remaining three to the second copy of  $C_n$ , each of these triples forming a path of length three in the corresponding copy. But a path of length three in  $C_n$  should be induced by four consecutive vertices  $v_i, v_{i+1}, v_{i+2}, v_{i+3} \pmod{n}$ . The fact that  $v_i, v_{i+3}$ is not an edge of the second (dashed) copy of  $C_n$  finishes the proof of this case.

#### Subcase B2. n is even.

It is easy to see that the edges of the form  $v_i v_{i+r} \pmod{n}$  define a cycle of length n if r and n are coprime. In order to prove the existence of such an integer rwe can use, for instance, the well-known Chebyshev's theorem saying that for each integer  $k \ge 4$  there is a prime number between k and 2k-2. Denote by p such a number where  $k = \frac{n}{2}$  and put r = n - p. Since a prime numer p and n are surely coprime, r and n are also coprime. Moreover, we have  $3 \le r \le \frac{n}{2} - 1$ . Similarly as above, it is easy to see that the graph formed by  $C_n$  and the edges of the form  $v_i v_{i+r} \pmod{n}$  is  $K_4$ -free. This finishes the proof.



Figure 3: Case A

## References

- B.BOLLOBÁS AND S.E.ELDRIDGE, Packings of graphs and applications to computational complexity, J. Combin. Theory B 25 (1978), 105–124.
- [2] D.BURNS AND S.SCHUSTER, Every (p, p-2) graph is contained in its complement, J. Graph Theory 1 (1977), 277–279.
- [3] D.BURNS AND S.SCHUSTER, Embedding (n, n-1) graphs in their complements, *Israel J. Math.* **30** (1978), 313–320.
- [4] B.GANTER, J.PELIKAN AND L.TEIRLINCK, Small sprawling systems of equicardinal sets, Ars Combinatoria 4 (1977), 133–142.
- [5] N. SAUER AND J. SPENCER, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978), 295–302.
- [6] M.WOŹNIAK, Embedding graphs of small size, Discrete Applied Math. 51 (1994), 233–241.
- [7] M.WOŹNIAK, Packing three trees, in Discrete Math. 150 (1996), 393–402.
- [8] M.WOŹNIAK, A note on uniquely embeddable graphs, *Discussiones Mathematicae-Graph Theory*, 18 (1998), 15-21.
- [9] M.WOŹNIAK, Packing of graphs some recent results and trends, Studies, Math. Series 16 (2003), 115–120.
- [10] M.WOŹNIAK, Packing of graphs and permutation a survey, Discrete Math. 276 (2004), 379–391.

[11] H.P.YAP, Packing of graphs — a survey, Discrete Math. 72 (1988), 395–404.