Apoloniusz TYSZKA

Some conjectures on integer arithmetic

Preprint Nr MD 046
(otrzymany dnia 4 I 2010)

Kraków 2010

Redaktorami serii preprintów Matematyka Dyskretna są: Wit FORYŚ,
prowadzący seminarium Stowa, stowa, stowa...
w Instytucie Informatyki UJ
oraz
Mariusz WOŹNIAK,
prowadzący seminarium Matematyka Dyskretna - Teoria Grafów na Wydziale Matematyki Stosowanej AGH.

Some conjectures on integer arithmetic

Apoloniusz Tyszka

Abstract. We conjecture: if integers x_{1}, \ldots, x_{n} satisfy $x_{1}^{2}>2^{2^{n}} \vee \ldots \vee x_{n}^{2}>2^{2^{n}}$, then

$$
\begin{gathered}
\left(\forall i, j, k \in\{1, \ldots, n\}\left(x_{i}+x_{j}=x_{k} \Rightarrow y_{i}+y_{j}=y_{k}\right)\right) \wedge \\
\left(\forall i, j, k \in\{1, \ldots, n\}\left(x_{i} \cdot x_{j}=x_{k} \Rightarrow y_{i} \cdot y_{j}=y_{k}\right)\right)
\end{gathered}
$$

for some integers y_{1}, \ldots, y_{n} satisfying $y_{1}^{2}+\ldots+y_{n}^{2}>n \cdot\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)$. By the conjecture, for Diophantine equations with finitely many integer solutions, the modulus of solutions are bounded by a computable function of the degree and the coefficients of the equation. If the set $\left\{\left(u, 2^{u}\right): u \in\{1,2,3, \ldots\}\right\} \subseteq \mathbb{Z}^{2}$ has a finite-fold Diophantine representation, then the conjecture fails for sufficiently large values of n.

It is unknown whether there is a computing algorithm which will tell of a given Diophantine equation whether or not it has a solution in integers, if we know that its set of integer solutions is finite. For any such equation, the following Conjecture 1 implies that all integer solutions are determinable by a brute-force search.

Conjecture 1 ([3, p. 4, Conjecture 2b]). If integers x_{1}, \ldots, x_{n} satisfy $x_{1}^{2}>2^{2^{n}} \vee \ldots \vee x_{n}^{2}>2^{2^{n}}$, then

$$
\begin{gather*}
\left(\forall i \in\{1, \ldots, n\}\left(x_{i}=1 \Rightarrow y_{i}=1\right)\right) \wedge \tag{*}\\
\left(\forall i, j, k \in\{1, \ldots, n\}\left(x_{i}+x_{j}=x_{k} \Rightarrow y_{i}+y_{j}=y_{k}\right)\right) \wedge \\
\left(\forall i, j, k \in\{1, \ldots, n\}\left(x_{i} \cdot x_{j}=x_{k} \Rightarrow y_{i} \cdot y_{j}=y_{k}\right)\right)
\end{gather*}
$$

for some integers y_{1}, \ldots, y_{n} satisfying $y_{1}^{2}+\ldots+y_{n}^{2}>n \cdot\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)$.
The bound $2^{2^{n}}$ cannot be decreased, because the conclusion does not hold for $\left(x_{1}, \ldots, x_{n}\right)=\left(2,4,16,256, \ldots, 2^{2^{n-2}}, 2^{2^{n-1}}\right)$.

Lemma 1. If $x_{1}^{2}>2^{2^{n}} \vee \ldots \vee x_{n}^{2}>2^{2^{n}}$ and $y_{1}^{2}+\ldots+y_{n}^{2}>n \cdot\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)$, then $y_{1}^{2}>2^{2^{n}} \vee \ldots \vee y_{n}^{2}>2^{2^{n}}$.
Proof. By the assumptions, it follows that $y_{1}^{2}+\ldots+y_{n}^{2}>n \cdot 2^{2^{n}}$. Hence, $y_{1}^{2}>2^{2^{n}} \vee \ldots \vee y_{n}^{2}>2^{2^{n}}$.

2000 Mathematics Subject Classification: 03B25, 03B30, 11D99, 11U05, 15 A 06. Key words and phrases: Diophantine equation with a finite number of integer solutions, upper bound for the solutions of a Diophantine equation, Davis-Putnam-RobinsonMatiyasevich theorem, finite-fold Diophantine representation, Presburger arithmetic.

By Lemma 1, Conjecture 1 is equivalent to saying that infinitely many integer n-tuples $\left(y_{1}, \ldots, y_{n}\right)$ satisfy the condition $(*)$, if integers x_{1}, \ldots, x_{n} satisfy $\max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)>2^{2^{n-1}}$. This formulation is simpler, but lies outside the language of arithmetic. Let

$$
E_{n}=\left\{x_{i}=1, x_{i}+x_{j}=x_{k}, x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}
$$

Another equivalent formulation of Conjecture 1 is thus: if a system $S \subseteq E_{n}$ has only finitely many integer solutions, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $\left|x_{1}\right|, \ldots,\left|x_{n}\right| \leq 2^{2^{n-1}}$.

To each system $S \subseteq E_{n}$ we assign the system \widetilde{S} defined by

$$
\left(S \backslash\left\{x_{i}=1: i \in\{1, \ldots, n\}\right\}\right) \cup
$$

$\left\{x_{i} \cdot x_{j}=x_{j}: i, j \in\{1, \ldots, n\}\right.$ and the equation $x_{i}=1$ belongs to $\left.S\right\}$
In other words, in order to obtain \widetilde{S} we remove from S each equation $x_{i}=1$ and replace it by the following n equations:

$$
\begin{aligned}
x_{i} \cdot x_{1} & =x_{1} \\
& \ldots \\
x_{i} \cdot x_{n} & =x_{n}
\end{aligned}
$$

Lemma 2. For each system $S \subseteq E_{n}$

$$
\begin{array}{r}
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}:\left(x_{1}, \ldots, x_{n}\right) \text { solves } \widetilde{S}\right\} \\
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}:\left(x_{1}, \ldots, x_{n}\right) \text { solves } S\right\} \cup\{(\underbrace{0, \ldots, 0}_{n-\text { times }})\}
\end{array}
$$

By Lemma 2, Conjecture 1 restricted to n variables has the following three equivalent formulations:
(I) If a system $S \subseteq\left\{x_{i}+x_{j}=x_{k}, x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}$ has only finitely many integer solutions, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $\left|x_{1}\right|, \ldots,\left|x_{n}\right| \leq 2^{2^{n-1}}$.
(II) If integers x_{1}, \ldots, x_{n} satisfy $x_{1}^{2}>2^{2^{n}} \vee \ldots \vee x_{n}^{2}>2^{2^{n}}$, then

$$
\begin{array}{r}
\left(\forall i, j, k \in\{1, \ldots, n\}\left(x_{i}+x_{j}=x_{k} \Rightarrow y_{i}+y_{j}=y_{k}\right)\right) \wedge \\
\left(\forall i, j, k \in\{1, \ldots, n\}\left(x_{i} \cdot x_{j}=x_{k} \Rightarrow y_{i} \cdot y_{j}=y_{k}\right)\right)
\end{array}
$$

for some integers y_{1}, \ldots, y_{n} satisfying $y_{1}^{2}+\ldots+y_{n}^{2}>n \cdot\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)$.
(III) Infinitely many integer n-tuples $\left(y_{1}, \ldots, y_{n}\right)$ satisfy the condition (\bullet), if integers x_{1}, \ldots, x_{n} satisfy $\max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)>2^{2^{n-1}}$.

Let CoLex denote the colexicographic order on \mathbb{Z}^{n}. We define a linear order $\mathcal{C} o \mathcal{L}$ on \mathbb{Z}^{n} by saying $\left(s_{1}, \ldots, s_{n}\right) \mathcal{C} o \mathcal{L}\left(t_{1}, \ldots, t_{n}\right)$ if and only if

$$
\max \left(\left|s_{1}\right|, \ldots,\left|s_{n}\right|\right)<\max \left(\left|t_{1}\right|, \ldots,\left|t_{n}\right|\right)
$$

or

$$
\max \left(\left|s_{1}\right|, \ldots,\left|s_{n}\right|\right)=\max \left(\left|t_{1}\right|, \ldots,\left|t_{n}\right|\right) \wedge\left(s_{1}, \ldots, s_{n}\right) \operatorname{CoLex}\left(t_{1}, \ldots, t_{n}\right)
$$

The ordered set $\left(\mathbb{Z}^{n}, \mathcal{C} \circ \mathcal{L}\right)$ is isomorphic to (\mathbb{N}, \leq) and the order $\mathcal{C} o \mathcal{L}$ is computable. Let

$$
\begin{gathered}
B_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}: \exists y_{1} \in \mathbb{Z} \ldots \exists y_{n} \in \mathbb{Z}\right. \\
\left(\forall i, j, k \in\{1, \ldots, n\}\left(x_{i}+x_{j}=x_{k} \Rightarrow y_{i}+y_{j}=y_{k}\right)\right) \wedge \\
\left(\forall i, j, k \in\{1, \ldots, n\}\left(x_{i} \cdot x_{j}=x_{k} \Rightarrow y_{i} \cdot y_{j}=y_{k}\right)\right) \wedge \\
\left.y_{1}^{2}+\ldots+y_{n}^{2}>n \cdot\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)\right\}
\end{gathered}
$$

Theorem 1. The set B_{n} is listable.
Proof. For a positive integer m, let $\left(y_{(m, 1)}, \ldots, y_{(m, n)}\right)$ be the m-th element of \mathbb{Z}^{n} in the order $\mathcal{C} o \mathcal{L}$. All integer n-tuples $\left(x_{1}, \ldots, x_{n}\right)$ satisfying

$$
\begin{gathered}
\left(\forall i, j, k \in\{1, \ldots, n\}\left(x_{i}+x_{j}=x_{k} \Rightarrow y_{(m, i)}+y_{(m, j)}=y_{(m, k)}\right)\right) \wedge \\
\left(\forall i, j, k \in\{1, \ldots, n\}\left(x_{i} \cdot x_{j}=x_{k} \Rightarrow y_{(m, i)} \cdot y_{(m, j)}=y_{(m, k)}\right)\right) \wedge \\
y_{(m, 1)}^{2}+\ldots+y_{(m, n)}^{2}>n \cdot\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)
\end{gathered}
$$

have Euclidean norm less than $\sqrt{\frac{y_{(m, 1)}^{2}+\ldots+y_{(m, n)}^{2}}{n}}$. Therefore, these n-tuples form a finite set and they can be effectively found. We list them in the order $\mathcal{C} o \mathcal{L}$. The needed listing of B_{n} is the concatenation of the listings for $m=1,2,3, \ldots$

Conjecture 2. The set B_{n} is not computable for sufficiently large values of n. Corollary. There exists a Diophantine equation that is logically undecidable. Proof. We describe a procedure which to an integer n-tuple (a_{1}, \ldots, a_{n}) assigns some finite system of Diophantine equations. We start its construction from the equation

$$
n \cdot\left(a_{1}^{2}+\ldots+a_{n}^{2}\right)+1+s^{2}+t^{2}+u^{2}+v^{2}=y_{1}^{2}+\ldots+y_{n}^{2}
$$

where $n \cdot\left(a_{1}^{2}+\ldots+a_{n}^{2}\right)+1$ stands for a concrete integer. Next, we apply the following rules:
if $i, j, k \in\{1, \ldots, n\}$ and $a_{i}+a_{j}=a_{k}$, then we incorporate the equation $y_{i}+y_{j}=y_{k}$,
if $i, j, k \in\{1, \ldots, n\}$ and $a_{i} \cdot a_{j}=a_{k}$, then we incorporate the equation $y_{i} \cdot y_{j}=y_{k}$.

The obtained system of equations we replace by a single Diophantine equation $D_{\left(a_{1}, \ldots, a_{n}\right)}\left(s, t, u, v, y_{1}, \ldots, y_{n}\right)=0$ with the same set of integer solutions. We prove that if n is sufficiently large, then there exist integers a_{1}, \ldots, a_{n} for which the Diophantine equation $D_{\left(a_{1}, \ldots, a_{n}\right)}\left(s, t, u, v, y_{1}, \ldots, y_{n}\right)=0$ is logically undecidable. Suppose, on the contrary, that for each integers a_{1}, \ldots, a_{n} the solvability of the equation $D_{\left(a_{1}, \ldots, a_{n}\right)}\left(s, t, u, v, y_{1}, \ldots, y_{n}\right)=0$ can be either proved or disproved. This would yield the following algorithm for deciding whether an integer n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ belongs to B_{n} : examine all proofs (in order of length) until for the equation $D_{\left(a_{1}, \ldots, a_{n}\right)}\left(s, t, u, v, y_{1}, \ldots, y_{n}\right)=0$ a proof that resolves the solvability question one way or the other is found.

For integers x_{1}, \ldots, x_{n}, the following code in $M u P A D$ finds the first integer n-tuple $\left(y_{1}, \ldots, y_{n}\right)$ that lies after $\left(x_{1}, \ldots, x_{n}\right)$ in the order $\mathcal{C} o \mathcal{L}$ and satisfies

$$
\begin{gathered}
\max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)<\max \left(\left|y_{1}\right|, \ldots,\left|y_{n}\right|\right) \wedge \\
\left(\forall i, j, k \in\{1, \ldots, n\}\left(x_{i}+x_{j}=x_{k} \Rightarrow y_{i}+y_{j}=y_{k}\right)\right) \wedge \\
\left(\forall i, j, k \in\{1, \ldots, n\}\left(x_{i} \cdot x_{j}=x_{k} \Rightarrow y_{i} \cdot y_{j}=y_{k}\right)\right)
\end{gathered}
$$

If an appropriate $\left(y_{1}, \ldots, y_{n}\right)$ does not exist, then the algorithm does not end and the output is empty. The names $\mathrm{x} 1, \ldots, \mathrm{xn}$ should be replaced by concrete integers.
$\mathrm{X}:=[\mathrm{x} 1, \ldots, \mathrm{xn}]$:
a:=max(abs(X[t]) \$t=1..nops(X)):
B:=[]:
for t from 1 to nops (X) do
B:=append (B,-a-1):
end_for:
repeat
m: =0:
S:=[1,1,1]:
repeat
if (X[S[1]]+X[S[2]]=X[S[3]] and $B[S[1]]+B[S[2]]<>B[S[3]])$ then $m:=1$
end_if:
if (X[S[1] $] * X[S[2]]=X[S[3]]$ and $B[S[1]] * B[S[2]]<>B[S[3]])$ then $m:=1$ end_if:
i:=1:
while (i<=3 and S[i]=nops(X)) do

```
i:=i+1:
end_while:
if i=1 then S[1]:=S[1]+1 end_if:
if i=2 then
S[1]:=S[2]+1:
S[2]:=S[2]+1 :
end_if:
if i=3 then
S[1]:=1:
S[2]:=1:
S[3]:=S[3]+1 :
end_if:
until (S=[nops(X),nops(X),nops(X)] or m=1) end_repeat:
Y:=B :
b:=max(abs(B[t]) $t=1..nops(X)):
if nops(X)>1 then w:=max(abs(B[t]) $t=2..nops(X)) end_if:
q:=1:
while (q<=nops(X) and B[q]=b) do
q:=q+1:
end_while:
if (nops(X)=1 and q=1) then B[1]=b end_if:
if (nops(X)>1 and q=1 and w<b) then B[1]:=b end_if:
if (nops (X)>1 and q=1 and w=b) then B[1]:=B[1]+1 end_if:
if (q>1 and q<=nops(X)) then
for u from 1 to q-1 do
B[u]:=-b:
end_for:
B [q] : = B [q] +1 :
end_if:
if q=nops(X)+1 then
B:= [] :
for t from 1 to nops(X) do
B:=append (B, -b-1) :
end_for:
end_if:
until m=0 end_repeat:
print(Y):
```

Let a Diophantine equation $D\left(x_{1}, \ldots, x_{p}\right)=0$ has only finitely many integer solutions. Let M denote the maximum of the absolute values of the coefficients of $D\left(x_{1}, \ldots, x_{p}\right), d_{i}$ denote the degree of $D\left(x_{1}, \ldots, x_{p}\right)$ with respect to the variable x_{i}. As the author proved ($[3$, p. 9 , Corollary 2]), Conjecture 1 restricted to $n=(2 M+1)^{\left(d_{1}+1\right)} \cdot \ldots \cdot\left(d_{p}+1\right)$ implies that $\left|x_{1}\right|, \ldots,\left|x_{p}\right| \leq 2^{2^{n-1}}$ for each integers x_{1}, \ldots, x_{p} satisfying $D\left(x_{1}, \ldots, x_{p}\right)=0$. Therefore, the equation $D\left(x_{1}, \ldots, x_{p}\right)=0$ can be fully solved by exhaustive search.

Davis-Putnam-Robinson-Matiyasevich theorem states that every listable set $\mathcal{M} \subseteq \mathbb{Z}^{n}$ has a Diophantine representation, that is

$$
\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{M} \Longleftrightarrow \exists x_{1} \in \mathbb{Z} \ldots \exists x_{m} \in \mathbb{Z} D\left(a_{1}, \ldots, a_{n}, x_{1}, \ldots, x_{m}\right)=0
$$

for some polynomial D with integer coefficients. Such a representation is said to be finite-fold if for any integers a_{1}, \ldots, a_{n} the equation $D\left(a_{1}, \ldots, a_{n}, x_{1}, \ldots, x_{m}\right)=0$ has at most finitely many integer solutions $\left(x_{1}, \ldots, x_{m}\right)$.

It is an open problem whether each listable set $\mathcal{M} \subseteq \mathbb{Z}^{n}$ has a finite-fold Diophantine representation, see [1, p. 42].

Lemma 3. Each Diophantine equation $D\left(x_{1}, \ldots, x_{p}\right)=0$ can be equivalently written as a system $S \subseteq E_{n}$, where $n \geq p$ and both n and S are algorithmically determinable. If the equation $D\left(x_{1}, \ldots, x_{p}\right)=0$ has only finitely many integer solutions, then the system S has only finitely many integer solutions.

A much more general and detailed formulation of Lemma 3 is given in [3, p. 9, Lemma 2].

Let the sequence $\left\{a_{n}\right\}$ be defined inductively by $a_{1}=2, a_{n+1}=2^{a_{n}}$.
Theorem 2. If the set $\left\{\left(u, 2^{u}\right): u \in\{1,2,3, \ldots\}\right\} \subseteq \mathbb{Z}^{2}$ has a finite-fold Diophantine representation, then Conjecture 1 fails for sufficiently large values of n.

Proof. By the assumption and Lemma 3, there exists a positive integer m such that in integer domain the formula $x_{1} \geq 1 \wedge x_{2}=2^{x_{1}}$ is equivalent to $\exists x_{3} \ldots \exists x_{m+2} \Phi\left(x_{1}, x_{2}, x_{3}, \ldots, x_{m+2}\right)$, where $\Phi\left(x_{1}, x_{2}, x_{3}, \ldots, x_{m+2}\right)$ is a conjunction of formulae of the form $x_{i}=1, x_{i}+x_{j}=x_{k}, x_{i} \cdot x_{j}=x_{k}$, and for each integers x_{1}, x_{2} at most finitely many integer m-tuples (x_{3}, \ldots, x_{m+2}) satisfy $\Phi\left(x_{1}, x_{2}, x_{3}, \ldots, x_{m+2}\right)$. Therefore, for each integer $n \geq 2$, the following quantifier-free formula

$$
\begin{aligned}
x_{1} & =1 \wedge \Phi\left(x_{1}, x_{2}, y_{(2,1)}, \ldots, y_{(2, m)}\right) \wedge \Phi\left(x_{2}, x_{3}, y_{(3,1)}, \ldots, y_{(3, m)}\right) \wedge \ldots \wedge \\
& \Phi\left(x_{n-2}, x_{n-1}, y_{(n-1,1)}, \ldots, y_{(n-1, m)}\right) \wedge \Phi\left(x_{n-1}, x_{n}, y_{(n, 1)}, \ldots, y_{(n, m)}\right)
\end{aligned}
$$

has $n+m \cdot(n-1)$ variables and its corresponding system of equations has at most finitely many integer solutions. In integer domain, this system implies that $x_{i}=a_{i}$ for each $i \in\{1, \ldots, n\}$. Each sufficiently large integer n satisfies $a_{n}>2^{2^{n+m \cdot(n-1)-1}}$. Hence, for each such n, Conjecture 1 fails.

Let $W_{n}=\left\{x_{i}=1, x_{i}+x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}$.
Conjecture 3. If a system $S \subseteq W_{n}$ has only finitely many integer solutions, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $\left|x_{1}\right|, \ldots,\left|x_{n}\right| \leq 2^{n-1}$.

The bound 2^{n-1} cannot be decreased, because the system

$$
\left\{\begin{aligned}
x_{1} & =1 \\
x_{1}+x_{1} & =x_{2} \\
x_{2}+x_{2} & =x_{3} \\
x_{3}+x_{3} & =x_{4} \\
& \cdots \\
x_{n-1}+x_{n-1} & =x_{n}
\end{aligned}\right.
$$

has a unique integer solution, namely $\left(1,2,4,8, \ldots, 2^{n-2}, 2^{n-1}\right)$.
A simple reasoning by contradiction proves the following Lemma 4.
Lemma 4. If a system $S \subseteq W_{n}$ has only finitely many integer solutions, then S has at most one integer solution.

By Lemma 4, Conjecture 3 is equivalent to the following statement: if integers x_{1}, \ldots, x_{n} satisfy

$$
\begin{gathered}
(x_{1}+\underbrace{1+\ldots+1}_{2^{n-1}-\text { times }}<0) \vee(\underbrace{1+\ldots+1}_{2^{n-1}-\text { times }}<x_{1}) \vee \ldots \vee \\
(x_{n}+\underbrace{1+\ldots+1}_{2^{n-1}-\text { times }}<0) \vee(\underbrace{1+\ldots+1}_{2^{n-1}-\text { times }}<x_{n})
\end{gathered}
$$

then

$$
\begin{gathered}
\left(\forall i \in\{1, \ldots, n\}\left(x_{i}=1 \Rightarrow y_{i}=1\right)\right) \wedge \\
\left(\forall i, j, k \in\{1, \ldots, n\}\left(x_{i}+x_{j}=x_{k} \Rightarrow y_{i}+y_{j}=y_{k}\right)\right)
\end{gathered}
$$

for some integers y_{1}, \ldots, y_{n} satisfying $x_{1} \neq y_{1} \vee \ldots \vee x_{n} \neq y_{n}$.
The above statement is decidable for each fixed n, because the first-order theory of $\langle\mathbb{Z} ;=,<;+; 0,1\rangle$ (Presburger arithmetic) is decidable.

Conjecture 4 ([2]). If a system $S \subseteq W_{n}$ is consistent over \mathbb{Z}, then S has an integer solution $\left(x_{1}, \ldots, x_{n}\right)$ in which $\left|x_{j}\right| \leq 2^{n-1}$ for each j.

By Lemma 4, Conjecture 4 implies Conjecture 3. Conjecture 4 is equivalent to the following statement: for each integers x_{1}, \ldots, x_{n} there exist integers y_{1}, \ldots, y_{n} such that

$$
\begin{gathered}
\left(\forall i \in\{1, \ldots, n\}\left(x_{i}=1 \Rightarrow y_{i}=1\right)\right) \wedge \\
\left(\forall i, j, k \in\{1, \ldots, n\}\left(x_{i}+x_{j}=x_{k} \Rightarrow y_{i}+y_{j}=y_{k}\right)\right) \wedge \\
\forall i \in\{1, \ldots, n\}((0 \leq \underbrace{1+\ldots+1}_{2^{n-1}-\text { times }}+y_{i}) \wedge(y_{i} \leq \underbrace{1+\ldots+1}_{2^{n-1}-\text { times }}))
\end{gathered}
$$

The above statement is decidable for each fixed n, because the first-order theory of $\langle\mathbb{Z} ;=,<;+; 0,1\rangle$ (Presburger arithmetic) is decidable.

References

[1] Yu. Matiyasevich, Hilbert's tenth problem: what was done and what is to be done. Hilbert's tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), 1-47, Contemp. Math. 270, Amer. Math. Soc., Providence, RI, 2000.
[2] A. Tyszka, Bounds of some real (complex) solution of a finite system of polynomial equations with rational coefficients, http://arxiv.org/abs/math/0702558, a shortened and revised version will appear in Mathematical Logic Quarterly 56 (2010), no. 2, under the title "Two conjectures on the arithmetic in \mathbb{R} and \mathbb{C} ".
[3] A. Tyszka, A hypothetical upper bound for the solutions of a Diophantine equation with a finite number of solutions, http://arxiv.org/abs/0901.2093

Apoloniusz Tyszka
University of Agriculture
Faculty of Production and Power Engineering
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

