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Some conjectures on integer arithmetic

Apoloniusz Tyszka

Abstract. We conjecture: if integers x1, . . . , xn satisfy x2
1 > 22n

∨ . . . ∨ x2
n > 22n

,

then

(∀i, j, k ∈ {1, . . . , n} (xi + xj = xk ⇒ yi + yj = yk)) ∧
(∀i, j, k ∈ {1, . . . , n} (xi · xj = xk ⇒ yi · yj = yk))

for some integers y1, . . . , yn satisfying y2
1 + . . . + y2

n > n · (x2
1 + . . . + x2

n). By

the conjecture, for Diophantine equations with finitely many integer

solutions, the modulus of solutions are bounded by a computable

function of the degree and the coefficients of the equation. If the set

{(u, 2u) : u ∈ {1, 2, 3, . . .}} ⊆ Z2 has a finite-fold Diophantine representation,

then the conjecture fails for sufficiently large values of n.

It is unknown whether there is a computing algorithm which will tell of

a given Diophantine equation whether or not it has a solution in integers, if

we know that its set of integer solutions is finite. For any such equation, the

following Conjecture 1 implies that all integer solutions are determinable by a

brute-force search.

Conjecture 1 ([3, p. 4, Conjecture 2b]). If integers x1, . . . , xn satisfy

x2
1 > 22n

∨ . . . ∨ x2
n > 22n

, then

(∗) (∀i ∈ {1, . . . , n} (xi = 1 ⇒ yi = 1)) ∧

(∀i, j, k ∈ {1, . . . , n} (xi + xj = xk ⇒ yi + yj = yk)) ∧

(∀i, j, k ∈ {1, . . . , n} (xi · xj = xk ⇒ yi · yj = yk))

for some integers y1, . . . , yn satisfying y2
1 + . . . + y2

n > n · (x2
1 + . . . + x2

n).

The bound 22n
cannot be decreased, because the conclusion does not hold

for (x1, . . . , xn) = (2, 4, 16, 256, . . . , 22n−2
, 22n−1

).

Lemma 1. If x2
1 > 22n

∨ . . . ∨ x2
n > 22n

and y2
1 + . . . + y2

n > n · (x2
1 + . . . + x2

n),

then y2
1 > 22n

∨ . . . ∨ y2
n > 22n

.

Proof. By the assumptions, it follows that y2
1 + . . . + y2

n > n · 22n
. Hence,

y2
1 > 22n

∨ . . . ∨ y2
n > 22n

.

�
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By Lemma 1, Conjecture 1 is equivalent to saying that infinitely many

integer n-tuples (y1, . . . , yn) satisfy the condition (∗), if integers x1, . . . , xn

satisfy max(|x1|, . . . , |xn|) > 22n−1
. This formulation is simpler, but lies outside

the language of arithmetic. Let

En = {xi = 1, xi + xj = xk, xi · xj = xk : i, j, k ∈ {1, . . . , n}}

Another equivalent formulation of Conjecture 1 is thus: if a system S ⊆ En

has only finitely many integer solutions, then each such solution (x1, . . . , xn)

satisfies |x1|, . . . , |xn| ≤ 22n−1
.

To each system S ⊆ En we assign the system S̃ defined by

(S \ {xi = 1 : i ∈ {1, . . . , n}})∪
{xi · xj = xj : i, j ∈ {1, . . . , n} and the equation xi = 1 belongs to S}

In other words, in order to obtain S̃ we remove from S each equation xi = 1

and replace it by the following n equations:

xi · x1 = x1

. . .

xi · xn = xn

Lemma 2. For each system S ⊆ En

{(x1, . . . , xn) ∈ Zn : (x1, . . . , xn) solves S̃} =

{(x1, . . . , xn) ∈ Zn : (x1, . . . , xn) solves S} ∪ {(0, . . . , 0︸ ︷︷ ︸
n−times

)}

By Lemma 2, Conjecture 1 restricted to n variables has the following three

equivalent formulations:

(I) If a system S ⊆ {xi + xj = xk, xi · xj = xk : i, j, k ∈ {1, . . . , n}} has

only finitely many integer solutions, then each such solution (x1, . . . , xn)

satisfies |x1|, . . . , |xn| ≤ 22n−1
.

(II) If integers x1, . . . , xn satisfy x2
1 > 22n

∨ . . . ∨ x2
n > 22n

, then

(•) (∀i, j, k ∈ {1, . . . , n} (xi + xj = xk ⇒ yi + yj = yk)) ∧
(∀i, j, k ∈ {1, . . . , n} (xi · xj = xk ⇒ yi · yj = yk))

for some integers y1, . . . , yn satisfying y2
1 + . . . + y2

n > n · (x2
1 + . . . + x2

n).

(III) Infinitely many integer n-tuples (y1, . . . , yn) satisfy the condition (•),
if integers x1, . . . , xn satisfy max(|x1|, . . . , |xn|) > 22n−1

.
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Let CoLex denote the colexicographic order on Zn. We define a linear order

CoL on Zn by saying (s1, . . . , sn)CoL(t1, . . . , tn) if and only if

max(|s1|, . . . , |sn|) < max(|t1|, . . . , |tn|)
or

max(|s1|, . . . , |sn|) = max(|t1|, . . . , |tn|) ∧ (s1, . . . , sn)CoLex(t1, . . . , tn)

The ordered set (Zn, CoL) is isomorphic to (N,≤) and the order CoL is com-

putable. Let

Bn = {(x1, . . . , xn) ∈ Zn : ∃y1 ∈ Z . . . ∃yn ∈ Z
(∀i, j, k ∈ {1, . . . , n} (xi + xj = xk ⇒ yi + yj = yk)) ∧
(∀i, j, k ∈ {1, . . . , n} (xi · xj = xk ⇒ yi · yj = yk)) ∧

y2
1 + . . . + y2

n > n · (x2
1 + . . . + x2

n)}

Theorem 1. The set Bn is listable.

Proof. For a positive integer m, let (y(m,1), . . . , y(m,n)) be the m-th element of

Zn in the order CoL. All integer n-tuples (x1, . . . , xn) satisfying

(∀i, j, k ∈ {1, . . . , n} (xi + xj = xk ⇒ y(m,i) + y(m,j) = y(m,k))) ∧
(∀i, j, k ∈ {1, . . . , n} (xi · xj = xk ⇒ y(m,i) · y(m,j) = y(m,k))) ∧

y2
(m,1) + . . . + y2

(m,n) > n · (x2
1 + . . . + x2

n)

have Euclidean norm less than

√
y2

(m,1) + . . . + y2
(m,n)

n . Therefore, these n-tuples

form a finite set and they can be effectively found. We list them in the or-

der CoL. The needed listing of Bn is the concatenation of the listings for

m = 1, 2, 3, . . .

�

Conjecture 2. The set Bn is not computable for sufficiently large values of n.

Corollary. There exists a Diophantine equation that is logically undecidable.

Proof. We describe a procedure which to an integer n-tuple (a1, . . . , an) assigns

some finite system of Diophantine equations. We start its construction from

the equation

n · (a2
1 + . . . + a2

n) + 1 + s2 + t2 + u2 + v2 = y2
1 + . . . + y2

n

where n · (a2
1 + . . . + a2

n) + 1 stands for a concrete integer. Next, we apply the

following rules:

if i, j, k ∈ {1, . . . , n} and ai + aj = ak, then we incorporate the equation

yi + yj = yk,

if i, j, k ∈ {1, . . . , n} and ai · aj = ak, then we incorporate the equation

yi · yj = yk.
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The obtained system of equations we replace by a single Diophantine equa-

tion D(a1, . . . , an)(s, t, u, v, y1, . . . , yn) = 0 with the same set of integer solu-

tions. We prove that if n is sufficiently large, then there exist integers a1, . . . , an

for which the Diophantine equation D(a1, . . . , an)(s, t, u, v, y1, . . . , yn) = 0 is

logically undecidable. Suppose, on the contrary, that for each integers a1, . . . , an

the solvability of the equation D(a1, . . . , an)(s, t, u, v, y1, . . . , yn) = 0 can be

either proved or disproved. This would yield the following algo-

rithm for deciding whether an integer n-tuple (a1, . . . , an) belongs

to Bn: examine all proofs (in order of length) until for the equation

D(a1, . . . , an)(s, t, u, v, y1, . . . , yn) = 0 a proof that resolves the solvability

question one way or the other is found.

�

For integers x1, . . . , xn, the following code in MuPAD finds the first integer

n-tuple (y1, . . . , yn) that lies after (x1, . . . , xn) in the order CoL and satisfies

max(|x1|, . . . , |xn|) < max(|y1|, . . . , |yn|) ∧
(∀i, j, k ∈ {1, . . . , n} (xi + xj = xk ⇒ yi + yj = yk)) ∧

(∀i, j, k ∈ {1, . . . , n} (xi · xj = xk ⇒ yi · yj = yk))

If an appropriate (y1, . . . , yn) does not exist, then the algorithm does not end

and the output is empty. The names x1,...,xn should be replaced by concrete

integers.

X:=[x1,...,xn]:

a:=max(abs(X[t]) $t=1..nops(X)):

B:=[]:

for t from 1 to nops(X) do

B:=append(B,-a-1):

end_for:

repeat

m:=0:

S:=[1,1,1]:

repeat

if (X[S[1]]+X[S[2]]=X[S[3]] and B[S[1]]+B[S[2]]<>B[S[3]]) then m:=1

end_if:

if (X[S[1]]*X[S[2]]=X[S[3]] and B[S[1]]*B[S[2]]<>B[S[3]]) then m:=1

end_if:

i:=1:

while (i<=3 and S[i]=nops(X)) do
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i:=i+1:

end_while:

if i=1 then S[1]:=S[1]+1 end_if:

if i=2 then

S[1]:=S[2]+1:

S[2]:=S[2]+1:

end_if:

if i=3 then

S[1]:=1:

S[2]:=1:

S[3]:=S[3]+1:

end_if:

until (S=[nops(X),nops(X),nops(X)] or m=1) end_repeat:

Y:=B:

b:=max(abs(B[t]) $t=1..nops(X)):

if nops(X)>1 then w:=max(abs(B[t]) $t=2..nops(X)) end_if:

q:=1:

while (q<=nops(X) and B[q]=b) do

q:=q+1:

end_while:

if (nops(X)=1 and q=1) then B[1]=b end_if:

if (nops(X)>1 and q=1 and w<b) then B[1]:=b end_if:

if (nops(X)>1 and q=1 and w=b) then B[1]:=B[1]+1 end_if:

if (q>1 and q<=nops(X)) then

for u from 1 to q-1 do

B[u]:=-b:

end_for:

B[q]:=B[q]+1:

end_if:

if q=nops(X)+1 then

B:=[]:

for t from 1 to nops(X) do

B:=append(B,-b-1):

end_for:

end_if:

until m=0 end_repeat:

print(Y):
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Let a Diophantine equation D(x1, . . . , xp) = 0 has only finitely many inte-

ger solutions. Let M denote the maximum of the absolute values of the coef-

ficients of D(x1, . . . , xp), di denote the degree of D(x1, . . . , xp) with respect to

the variable xi. As the author proved ([3, p. 9, Corollary 2]), Conjecture 1 re-

stricted to n = (2M + 1)(d1 + 1) · . . . · (dp + 1) implies that |x1|, . . . , |xp| ≤ 22n−1

for each integers x1, . . . , xp satisfying D(x1, . . . , xp) = 0. Therefore, the equa-

tion D(x1, . . . , xp) = 0 can be fully solved by exhaustive search.

Davis-Putnam-Robinson-Matiyasevich theorem states that every listable

set M⊆ Zn has a Diophantine representation, that is

(a1, . . . , an) ∈M⇐⇒ ∃x1 ∈ Z . . . ∃xm ∈ Z D(a1, . . . , an, x1, . . . , xm) = 0

for some polynomial D with integer coefficients. Such a representation

is said to be finite-fold if for any integers a1, . . . , an the equa-

tion D(a1, . . . , an, x1, . . . , xm) = 0 has at most finitely many integer solutions

(x1, . . . , xm).

It is an open problem whether each listable set M⊆ Zn has a finite-fold

Diophantine representation, see [1, p. 42].

Lemma 3. Each Diophantine equation D(x1, . . . , xp) = 0 can be equivalently

written as a system S ⊆ En, where n ≥ p and both n and S are algorithmically

determinable. If the equation D(x1, . . . , xp) = 0 has only finitely many integer

solutions, then the system S has only finitely many integer solutions.

A much more general and detailed formulation of Lemma 3 is given in

[3, p. 9, Lemma 2].

Let the sequence {an} be defined inductively by a1 = 2, an+1 = 2an .

Theorem 2. If the set {(u, 2u) : u ∈ {1, 2, 3, . . .}} ⊆ Z2 has a finite-fold

Diophantine representation, then Conjecture 1 fails for sufficiently large values

of n.

Proof. By the assumption and Lemma 3, there exists a positive integer m

such that in integer domain the formula x1 ≥ 1 ∧ x2 = 2x1 is equivalent

to ∃x3 . . . ∃xm+2 Φ(x1, x2, x3, . . . , xm+2), where Φ(x1, x2, x3, . . . , xm+2) is a

conjunction of formulae of the form xi = 1, xi + xj = xk, xi · xj = xk, and

for each integers x1, x2 at most finitely many integer m-tuples (x3, . . . , xm+2)

satisfy Φ(x1, x2, x3, . . . , xm+2). Therefore, for each integer n ≥ 2, the following

quantifier-free formula
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x1 = 1 ∧ Φ(x1, x2, y(2,1), . . . , y(2,m)) ∧ Φ(x2, x3, y(3,1), . . . , y(3,m)) ∧ . . . ∧

Φ(xn−2, xn−1, y(n−1,1), . . . , y(n−1,m)) ∧ Φ(xn−1, xn, y(n,1), . . . , y(n,m))

has n + m · (n− 1) variables and its corresponding system of equations has at

most finitely many integer solutions. In integer domain, this system implies

that xi = ai for each i ∈ {1, . . . , n}. Each sufficiently large integer n satisfies

an > 22n+m·(n−1)−1
. Hence, for each such n, Conjecture 1 fails.

�

Let Wn = {xi = 1, xi + xj = xk : i, j, k ∈ {1, . . . , n}}.

Conjecture 3. If a system S ⊆ Wn has only finitely many integer solutions,

then each such solution (x1, . . . , xn) satisfies |x1|, . . . , |xn| ≤ 2n−1.

The bound 2n−1 cannot be decreased, because the system

x1 = 1

x1 + x1 = x2

x2 + x2 = x3

x3 + x3 = x4

. . .

xn−1 + xn−1 = xn

has a unique integer solution, namely (1, 2, 4, 8, . . . , 2n−2, 2n−1).

A simple reasoning by contradiction proves the following Lemma 4.

Lemma 4. If a system S ⊆ Wn has only finitely many integer solutions, then

S has at most one integer solution.

By Lemma 4, Conjecture 3 is equivalent to the following statement: if

integers x1, . . . , xn satisfy(
x1 + 1 + . . . + 1︸ ︷︷ ︸

2n−1−times

< 0
)
∨

(
1 + . . . + 1︸ ︷︷ ︸
2n−1−times

< x1

)
∨ . . . ∨

(
xn + 1 + . . . + 1︸ ︷︷ ︸

2n−1−times

< 0
)
∨

(
1 + . . . + 1︸ ︷︷ ︸
2n−1−times

< xn

)
then

(∀i ∈ {1, . . . , n} (xi = 1 ⇒ yi = 1)) ∧
(∀i, j, k ∈ {1, . . . , n} (xi + xj = xk ⇒ yi + yj = yk))

for some integers y1, . . . , yn satisfying x1 6= y1 ∨ . . . ∨ xn 6= yn.

The above statement is decidable for each fixed n, because the first-order

theory of 〈Z; =, <; +; 0, 1〉 (Presburger arithmetic) is decidable.
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Conjecture 4 ([2]). If a system S ⊆ Wn is consistent over Z, then S has an

integer solution (x1, . . . , xn) in which |xj| ≤ 2n−1 for each j.

By Lemma 4, Conjecture 4 implies Conjecture 3. Conjecture 4 is equivalent

to the following statement: for each integers x1, . . . , xn there exist integers

y1, . . . , yn such that

(∀i ∈ {1, . . . , n} (xi = 1 ⇒ yi = 1)) ∧
(∀i, j, k ∈ {1, . . . , n} (xi + xj = xk ⇒ yi + yj = yk)) ∧

∀i ∈ {1, . . . , n}
((

0 ≤ 1 + . . . + 1︸ ︷︷ ︸
2n−1−times

+yi

)
∧

(
yi ≤ 1 + . . . + 1︸ ︷︷ ︸

2n−1−times

))
The above statement is decidable for each fixed n, because the first-order

theory of 〈Z; =, <; +; 0, 1〉 (Presburger arithmetic) is decidable.
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