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Abstract

One of the classical results in packing theory states that every graph of
order n and size less than or equal to n− 2 is packable in its complement.
Moreover, the bound is sharp because the star is not packable. A similar
problem arises for digraphs, namely, to find the maximal number fD(n)
such that every digraph of order n and size less than or equal to fD(n) is
packable. So far it is known that 7

4
n − 81 ≤ fD(n) ≤ 2n − 4 where the

upper bound is sharp. In this paper we prove that fD(n) = 2n− o(n).

1 Introduction

We deal with finite, directed graphs without loops or multiple arcs. We use
standard graph theory notation. The order of a graph G is denoted by |G| and
the size is denoted by ||G||. Let G be a graph (a digraph) with a vertex set V (G).
We say that G is packable in its complement, in short G is packable, if there is a
permutation σ on V (G) such that if xy is an edge (an arc) of G then σ(x)σ(y)
is not an edge (an arc) in G. A graph or a digraph is self-complementary if it
is isomorphic to its complement. Obviously, every self-complementary graph is
packable.

The problem of finding the maximum number fG(n) such that every graph
G of order |G| = n and size ||G|| ≤ fG(n) is packable was independently solved
in [2, 3, 6].

Theorem 1 Let G be a graph of order n such that ||G|| ≤ n − 2. Then G is
packable.

The example of the star shows that Theorem 1 cannot be improved by raising
the size of G. However it can be improved in other ways. The following theorem
was proved in [7]:

Theorem 2 Let G be a graph of order n such that ||G|| ≤ n − 2. Then G is
packable without fixed points, i.e. σ(x) 6= x for every x ∈ V (G).

A similar problem arises for digraphs with a corresponding function fD(n). If
a digraph D has only symmetric arcs then by Theorem 1, D is packable if
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