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Coloring chip con�gurations on graphs and
digraphs

Mieczys÷aw Borowiecki, Jaros÷aw Grytczuk, and Monika Piĺsniak

Abstract. Let D be a simple directed graph. Suppose that each edge
of D is assigned with some number of chips. For a vertex v of D, let
q+(v) and q�(v) be the total number of chips lying on the arcs outgoing
form v and incoming to v, respectively. Let q(v) = q+(v) � q�(v). We
prove that there is always a chip arrangement, with one or two chips per
edge, such that q(v) is a proper coloring of D. We also show that every
undirected graph G can be oriented so that adjacent vertices have di¤er-
ent balanced degrees (or even di¤erent in-degrees). The arguments are
based on peculiar chip shifting operation which provides e¢ cient algo-
rithms for obtaining the desired chip con�gurations. We also investigate
modular versions of these problems. We prove that every k-colorable di-
graph has a coloring chip con�guration modulo k or k + 1.

1. Introduction

Let G be a simple connected graph with at least two edges. Suppose
that each edge of G is assigned with one, two, or three chips. For a vertex
v, let q(v) denote the total number of chips lying on the edges incident to v.
Is it possible to place the chips so that q(u) is di¤erent from q(v) for every
pair of adjacent vertices u, v?

This innocently looking question was posed by Karoński, ×uczak, and
Thomason [9] as a variant of the irregularity strength of a graph (where all
numbers q(v), not just for adjacent vertices, are to be di¤erent). Despite
some e¤orts using various methods [3], [4], [9] the question remains open.
Currently best result asserts that positive solution exists if we allow up to
�ve chips per edge [8]. The proof gives an e¢ cient algorithm for obtaining
the desired arrangement of chips. The main idea appeared �rst in a slightly
modi�ed version of the problem, proposed in [10], in which chips are placed
on the edges as well as on the vertices of G (with q(v) denoting the total
number of chips lying on the edges incident to v and on the vertex v itself).
It is conjectured [10] that appropriate chip con�guration is now possible for
every graph G with just one or two chips per every edge and every vertex. In
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