

Apoloniusz TYSZKA

Is there an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the number of integer solutions if the solution set is finite?

Preprint Nr MD 067 (otrzymany dnia 14.06.2013)

> Kraków 2013

Redaktorami serii preprintów Matematyka Dyskretna są: Wit FORYŚ (Instytut Informatyki UJ) oraz Mariusz WOŹNIAK (Katedra Matematyki Dyskretnej AGH) Is there an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the number of integer solutions if the solution set is finite?

Apoloniusz Tyszka

Abstract

Let $E_n = \{x_i = 1, x_i + x_j = x_k, x_i \cdot x_j = x_k : i, j, k \in \{1, ..., n\}\}$. For a positive integer *n*, let f(n) denote the greatest finite total number of solutions of a subsystem of E_n in integers $x_1, ..., x_n$. We prove: (1) the function *f* is strictly increasing, (2) if a non-decreasing function *g* from positive integers to positive integers satisfies $f(n) \le g(n)$ for any *n*, then a finite-fold Diophantine representation of *g* does not exist, (3) if the question of the title has a positive integers to positive integers and $f(n) \le g(n)$ for any *n*, then a finite-fold Diophantine representation of *g* does not exist, (3) if the question of the title has a positive integers to positive integers such that $f(n) \le g(n)$ for any *n* and a finite-fold Diophantine representation of *g* does not exist.

Key words: Davis-Putnam-Robinson-Matiyasevich theorem, finite-fold Diophantine representation.

2010 Mathematics Subject Classification: 03D25, 11U05.

The Davis-Putnam-Robinson-Matiyasevich theorem states that every recursively enumerable set $\mathcal{M} \subseteq \mathbb{N}^n$ has a Diophantine representation, that is

$$(a_1,\ldots,a_n) \in \mathcal{M} \iff \exists x_1,\ldots,x_m \in \mathbb{N} \ W(a_1,\ldots,a_n,x_1,\ldots,x_m) = 0$$
 (R)

for some polynomial W with integer coefficients, see [3] and [2]. The polynomial W can be computed, if we know a Turing machine M such that, for all $(a_1, \ldots, a_n) \in \mathbb{N}^n$, M halts on (a_1, \ldots, a_n) if and only if $(a_1, \ldots, a_n) \in \mathcal{M}$, see [3] and [2].

The representation (R) is said to be finite-fold if for any $a_1, \ldots, a_n \in \mathbb{N}$ the equation $W(a_1, \ldots, a_n, x_1, \ldots, x_m) = 0$ has only finitely many solutions $(x_1, \ldots, x_m) \in \mathbb{N}^m$.

Open Problem ([1, pp. 341–342], [4, p. 42], [5, p. 79]). *Does each recursively enumerable set* $\mathcal{M} \subseteq \mathbb{N}^n$ *has a finite-fold Diophantine representation?*

Let $\mathcal{R}ng$ denote the class of all rings K that extend \mathbb{Z} . The Skolem proved that any Diophantine equation can be algorithmically transformed into an equivalent system of Diophantine equations of degree at most 2, see [6, pp. 2–3] and [3, pp. 3–4]. Let

$$E_n = \{x_i = 1, x_i + x_j = x_k, x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\}\}$$

The following result strengthens Skolem's theorem.

Lemma 1. Let $D(x_1, ..., x_p) \in \mathbb{Z}[x_1, ..., x_p]$. Assume that $d_i = \deg(D, x_i) \ge 1$ for each $i \in \{1, ..., p\}$. We can compute a positive integer n > p and a system $T \subseteq E_n$ which satisfies the following two conditions:

(4) If $K \in \mathcal{R}ng \cup \{\mathbb{N}\}$, then

$$\forall \tilde{x}_1, \dots, \tilde{x}_p \in \mathbf{K} \left(D(\tilde{x}_1, \dots, \tilde{x}_p) = 0 \iff \exists \tilde{x}_{p+1}, \dots, \tilde{x}_n \in \mathbf{K} \left(\tilde{x}_1, \dots, \tilde{x}_p, \tilde{x}_{p+1}, \dots, \tilde{x}_n \right) \text{ solves } T \right)$$

(5) If $\mathbf{K} \in \mathcal{R}ng \cup \{\mathbb{N}\}$, then for each $\tilde{x}_1, \ldots, \tilde{x}_p \in \mathbf{K}$ with $D(\tilde{x}_1, \ldots, \tilde{x}_p) = 0$, there exists a unique tuple $(\tilde{x}_{p+1}, \ldots, \tilde{x}_n) \in \mathbf{K}^{n-p}$ such that the tuple $(\tilde{x}_1, \ldots, \tilde{x}_p, \tilde{x}_{p+1}, \ldots, \tilde{x}_n)$ solves T.

Conditions (4) and (5) imply that for each $\mathbf{K} \in \mathcal{R}ng \cup \{\mathbb{N}\}$, the equation $D(x_1, \ldots, x_p) = 0$ and the system T have the same number of solutions in \mathbf{K} .

Proof. For $K \in \mathcal{R}ng$, Lemma 1 is proved in [7]. We provide the proof for any $K \in \mathcal{R}ng \cup \{\mathbb{N}\}$. Let

$$D(x_1,\ldots,x_p)=\sum a(i_1,\ldots,i_p)\cdot x_1^{i_1}\cdot\ldots\cdot x_p^{i_p}$$

where $a(i_1, \ldots, i_p)$ denote non-zero integers, and let M denote the maximum of the absolute values of the coefficients of $D(x_1, \ldots, x_p)$. Let \mathcal{T} denote the set of all polynomials $W(x_1, \ldots, x_p) \in \mathbb{Z}[x_1, \ldots, x_p]$ such that their coefficients belong to the interval [0, M] and deg $(W, x_i) \leq d_i$ for each $i \in \{1, \ldots, p\}$. Let n denote the cardinality of \mathcal{T} . It is easy to check that

$$n = (M+1)^{(d_1+1)} \cdot \ldots \cdot (d_p+1) \ge 2^{2^p} > p$$

We define:

$$A(x_1, \dots, x_p) = \sum_{a(i_1, \dots, i_p) > 0} a(i_1, \dots, i_p) \cdot x_1^{i_1} \cdot \dots \cdot x_p^{i_p}$$
$$B(x_1, \dots, x_p) = \sum_{a(i_1, \dots, i_p) < 0} -a(i_1, \dots, i_p) \cdot x_1^{i_1} \cdot \dots \cdot x_p^{i_p}$$

The equation $D(x_1, \ldots, x_p) = 0$ is equivalent to $0 + A(x_1, \ldots, x_p) = B(x_1, \ldots, x_p)$, where 0, $A(x_1, \ldots, x_p)$, $B(x_1, \ldots, x_p) \in \mathcal{T}$. We choose any bijection $\tau : \{1, \ldots, n\} \longrightarrow \mathcal{T}$ such that $\tau(1) = x_1, \ldots, \tau(p) = x_p$, and $\tau(p+1) = 0$. Let \mathcal{H} denote the set of all equations from E_n which are identities in $\mathbb{Z}[x_1, \ldots, x_p]$, if $x_i = \tau(i)$ for each $i \in \{1, \ldots, n\}$. Since $\tau(p+1) = 0$, the equation $x_{p+1} + x_{p+1} = x_{p+1}$ belongs to \mathcal{H} . We define T as $\mathcal{H} \cup \{x_{p+1} + x_s = x_t\}$, where $s = \tau^{-1}(A(x_1, \ldots, x_p))$ and $t = \tau^{-1}(B(x_1, \ldots, x_p))$. For each $\tilde{x}_1, \ldots, \tilde{x}_p \in \mathbf{K}$ with $D(\tilde{x}_1, \ldots, \tilde{x}_p) = 0$, the sought-for elements $\tilde{x}_{p+1}, \ldots, \tilde{x}_n \in \mathbf{K}$ exist, are unique, and satisfy

$$\forall i \in \{p+1,\ldots,n\} \ \tilde{x}_i = \tau(i)[x_1 \mapsto \tilde{x}_1,\ldots,x_p \mapsto \tilde{x}_p]$$

For a positive integer n, let f(n) denote the greatest finite total number of solutions of a subsystem of E_n in integers x_1, \ldots, x_n . Obviously, f(1) = 2 as the equation $x_1 \cdot x_1 = x_1$ has exactly two integer solutions.

Lemma 2. For each positive integer n, $f(n + 1) \ge 2 \cdot f(n) > f(n)$.

Proof. If *r* is a positive integer and a system $S \subseteq E_n$ has exactly *r* solutions in integers x_1, \ldots, x_n , then the system $S \cup \{x_{n+1} \cdot x_{n+1} = x_{n+1}\} \subseteq E_{n+1}$ has exactly 2r solutions in integers x_1, \ldots, x_{n+1} .

Corollary. *The function f is strictly increasing.*

A function $\beta : \mathbb{N} \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ is said to majorize a function $\alpha : \mathbb{N} \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ provided $\alpha(n) \le \beta(n)$ for any *n*.

Theorem 1. If a non-decreasing function $g : \mathbb{N} \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ majorizes f, then a finite-fold Diophantine representation of g does not exist.

Proof. Assume, on the contrary, that there is a finite-fold Diophantine representation of g. It means that there is a polynomial $W(x_1, x_2, x_3, ..., x_m)$ with integer coefficients such that

(6) for any non-negative integers x_1, x_2 ,

$$(x_1, x_2) \in g \iff \exists x_3, \dots, x_m \in \mathbb{N} \ W(x_1, x_2, x_3, \dots, x_m) = 0$$

and for each non-negative integers x_1, x_2 at most finitely many tuples $(x_3, \ldots, x_m) \in \mathbb{N}^{m-2}$ satisfy $W(x_1, x_2, x_3, \ldots, x_m) = 0$. By Lemma 1, there is a formula $\Phi(x_1, x_2, x_3, \ldots, x_s)$ such that

- (7) $s \ge \max(m, 3)$ and $\Phi(x_1, x_2, x_3, ..., x_s)$ is a conjunction of formulae of the forms $x_i = 1$, $x_i + x_j = x_k$, $x_i \cdot x_j = x_k$ $(i, j, k \in \{1, ..., s\})$ which equivalently expresses that $W(x_1, x_2, x_3, ..., x_m) = 0$ and each x_i (i = 1, ..., m) is a sum of four squares.
- Let *S* denote the following system

$$\begin{array}{rcl} a \cdot a &=& A\\ b \cdot b &=& B\\ c \cdot c &=& C\\ d \cdot d &=& D\\ A + B &=& u_1\\ C + D &=& u_2\\ u_1 + u_2 &=& u_3\\ \tilde{a} \cdot \tilde{a} &=& \tilde{A}\\ \tilde{b} \cdot \tilde{b} &=& \tilde{B}\\ \tilde{c} \cdot \tilde{c} &=& \tilde{C}\\ \tilde{d} \cdot \tilde{d} &=& \tilde{D}\\ \tilde{A} + \tilde{B} &=& \tilde{u}_1\\ \tilde{C} + \tilde{D} &=& \tilde{u}_2\\ \tilde{u}_1 + \tilde{u}_2 &=& \tilde{u}_3\\ u_3 + \tilde{u}_3 &=& x_2\\ t_1 &=& 1\\ t_1 + t_1 &=& t_2\\ t_2 \cdot t_2 &=& t_3\\ t_3 \cdot t_3 &=& t_4\\ \dots\\ t_{s-1} \cdot t_{s-1} &=& t_s\\ t_s \cdot t_s &=& t_{s+1}\\ t_{s+1} \cdot t_{s+1} &=& x_1\end{array}$$
all equations occurring in $\Phi(x_1, x_2, x_3, \dots, x_s)$

with 2s + 23 variables. The system S equivalently expresses the following conjunction:

$$\left(\left(a^{2}+b^{2}+c^{2}+d^{2}\right)+\left(\tilde{a}^{2}+\tilde{b}^{2}+\tilde{c}^{2}+\tilde{d}^{2}\right)=x_{2}\right)\wedge\left(x_{1}=2^{2^{s}}\right)\wedge\Phi(x_{1},x_{2},x_{3},\ldots,x_{s})$$

Conditions (6) - (7) and Lagrange's four-square theorem imply that the system S is satisfiable over integers and has only finitely many integer solutions. Let L denote the number of integer solutions to S. If an integer tuple solves S, then $x_1 = 2^{2^s}$ and $x_2 = g(x_1) = g(2^{2^s})$. Since the equation $u_3 + \tilde{u}_3 = x_2$ belongs to S and Lagrange's four-square theorem holds, $L \ge g(2^{2^s}) + 1$. The definition of f implies that

$$L \le f\left(2s + 23\right) \tag{8}$$

Since g majorizes f,

$$f(2s+23) < g(2s+23) + 1 \tag{9}$$

Since $s \ge 3$ and g is non-decreasing,

$$g(2s+23) + 1 \le g(2^{2^s}) + 1$$
 (10)

Inequalities (8)-(10) imply that $L < g(2^{2^s}) + 1$, a contradiction.

Theorem 2. If the question of the title has a positive answer, then there is a computable strictly increasing function $g : \mathbb{N} \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ such that g majorizes f and a finite-fold Diophantine representation of g does not exist.

Proof. For each positive integer *r*, there are only finitely many Diophantine equations whose lengths are not greater than *r*, and these equations can be algorithmically constructed. This and the assumption that the question of the title has a positive answer imply that there exists a computable function $\delta : \mathbb{N} \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ such that for each positive integer *r* and for each Diophantine equation whose length is not greater than *r*, $\delta(r)$ is greater than the number of integer solutions if the solution set is finite. There is a computable function $\psi : \mathbb{N} \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ such that each subsystem of E_n is equivalent to a Diophantine equation whose length is not greater than $\psi(n)$. The function

$$\mathbb{N} \setminus \{0\} \ni n \stackrel{h}{\longmapsto} \delta(\psi(n)) \in \mathbb{N} \setminus \{0\}$$

is computable. The definition of f implies that h majorizes f. The function

$$\mathbb{N} \setminus \{0\} \ni n \stackrel{g}{\longmapsto} \sum_{i=1}^{n} h(i) \in \mathbb{N} \setminus \{0\}$$

is computable and strictly increasing. Since g majorizes h and h majorizes f, g majorizes f. By Theorem 1, a finite-fold Diophantine representation of g does not exist. \Box

References

- M. Davis, Yu. Matiyasevich, J. Robinson, *Hilbert's tenth problem. Diophantine equations: positive aspects of a negative solution*, in: Mathematical developments arising from Hilbert problems (ed. F. E. Browder), Proc. Sympos. Pure Math., vol. 28, Part 2, Amer. Math. Soc., 1976, 323–378; reprinted in: The collected works of Julia Robinson (ed. S. Feferman), Amer. Math. Soc., 1996, 269–324.
- [2] L. B. Kuijer, Creating a diophantine description of a r.e. set and on the complexity of such a description, MSc thesis, Faculty of Mathematics and Natural Sciences, University of Groningen, 2010, http://irs.ub.rug. nl/dbi/4b87adf513823.
- [3] Yu. Matiyasevich, *Hilbert's tenth problem*, MIT Press, Cambridge, MA, 1993.
- [4] Yu. Matiyasevich, *Hilbert's tenth problem: what was done and what is to be done*. Hilbert's tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), 1–47, Contemp. Math. 270, Amer. Math. Soc., Providence, RI, 2000.
- [5] Yu. Matiyasevich, Towards finite-fold Diophantine representations, Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 377 (2010), 78–90, ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v377/p078. pdf.
- [6] Th. Skolem, Diophantische Gleichungen, Julius Springer, Berlin, 1938.

[7] A. Tyszka, K. Molenda, M. Sporysz, An algorithm which transforms any Diophantine equation into an equivalent system of equations of the forms $x_i = 1$, $x_i + x_j = x_k$, $x_i \cdot x_j = x_k$, Int. Math. Forum 8 (2013), no. 1, 31–37, http://m-hikari.com/imf/imf-2013/1-4-2013/ tyszkaIMF1-4-2013-1.pdf.

Apoloniusz Tyszka Faculty of Production and Power Engineering University of Agriculture Balicka 116B, 30-149 Kraków, Poland E-mail: rttyszka@cyf-kr.edu.pl