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Is there an algorithm which takes as input a Diophantine equation,
returns an integer, and this integer is greater than the number of

integer solutions if the solution set is finite?

Apoloniusz Tyszka

Abstract

Let En = {xi = 1, xi + x j = xk, xi · x j = xk : i, j, k ∈ {1, . . . , n}}. For a
positive integer n, let f (n) denote the greatest finite total number of solutions
of a subsystem of En in integers x1, . . . , xn. We prove: (1) the function f
is strictly increasing, (2) if a non-decreasing function g from positive
integers to positive integers satisfies f (n) ≤ g(n) for any n, then a finite-fold
Diophantine representation of g does not exist, (3) if the question of the
title has a positive answer, then there is a computable strictly increasing
function g from positive integers to positive integers such that f (n) ≤ g(n)
for any n and a finite-fold Diophantine representation of g does not exist.

Key words: Davis-Putnam-Robinson-Matiyasevich theorem, finite-fold
Diophantine representation.

2010 Mathematics Subject Classification: 03D25, 11U05.

The Davis-Putnam-Robinson-Matiyasevich theorem states that every
recursively enumerable setM ⊆ Nn has a Diophantine representation, that is

(a1, . . . , an) ∈ M ⇐⇒ ∃x1, . . . , xm ∈ N W(a1, . . . , an, x1, . . . , xm) = 0 (R)

for some polynomial W with integer coefficients, see [3] and [2]. The
polynomial W can be computed, if we know a Turing machine M such that, for all
(a1, . . . , an) ∈ Nn, M halts on (a1, . . . , an) if and only if (a1, . . . , an) ∈ M, see [3]
and [2].

The representation (R) is said to be finite-fold if for any a1, . . . , an ∈ N
the equation W(a1, . . . , an, x1, . . . , xm) = 0 has only finitely many solutions
(x1, . . . , xm) ∈ Nm.
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Open Problem ([1, pp. 341–342], [4, p. 42], [5, p. 79]). Does each recursively
enumerable setM ⊆ Nn has a finite-fold Diophantine representation?

Let Rng denote the class of all rings K that extend Z. Th. Skolem proved that
any Diophantine equation can be algorithmically transformed into an equivalent
system of Diophantine equations of degree at most 2, see [6, pp. 2–3] and
[3, pp. 3–4]. Let

En = {xi = 1, xi + x j = xk, xi · x j = xk : i, j, k ∈ {1, . . . , n}}

The following result strengthens Skolem’s theorem.

Lemma 1. Let D(x1, . . . , xp) ∈ Z[x1, . . . , xp]. Assume that di = deg(D, xi) ≥ 1 for
each i ∈ {1, . . . , p}. We can compute a positive integer n > p and a system T ⊆ En

which satisfies the following two conditions:

(4) If K ∈ Rng ∪ {N}, then

∀x̃1, . . . , x̃p ∈ K
(
D(x̃1, . . . , x̃p) = 0⇐⇒

∃x̃p+1, . . . , x̃n ∈ K (x̃1, . . . , x̃p, x̃p+1, . . . , x̃n) solves T
)

(5) If K ∈ Rng ∪ {N}, then for each x̃1, . . . , x̃p ∈ K with D(x̃1, . . . , x̃p) = 0,
there exists a unique tuple (x̃p+1, . . . , x̃n) ∈ Kn−p such that the tuple
(x̃1, . . . , x̃p, x̃p+1, . . . , x̃n) solves T .

Conditions (4) and (5) imply that for each K ∈ Rng ∪ {N}, the equation
D(x1, . . . , xp) = 0 and the system T have the same number of solutions in K.

Proof. For K ∈ Rng, Lemma 1 is proved in [7]. We provide the proof for any
K ∈ Rng ∪ {N}. Let

D(x1, . . . , xp) =
∑

a(i1, . . . , ip) · xi1
1 · . . . · x

ip
p

where a(i1, . . . , ip) denote non-zero integers, and let M denote the maximum of
the absolute values of the coefficients of D(x1, . . . , xp). Let T denote the set of
all polynomials W(x1, . . . , xp) ∈ Z[x1, . . . , xp] such that their coefficients belong
to the interval [0,M] and deg(W, xi) ≤ di for each i ∈ {1, . . . , p}. Let n denote the
cardinality of T . It is easy to check that

n = (M + 1)(d1 + 1) · . . . · (dp + 1) ≥ 22p
> p
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We define:

A(x1, . . . , xp) =
∑

a(i1,...,ip)>0

a(i1, . . . , ip) · xi1
1 · . . . · x

ip
p

B(x1, . . . , xp) =
∑

a(i1,...,ip)<0

−a(i1, . . . , ip) · xi1
1 · . . . · x

ip
p

The equation D(x1, . . . , xp) = 0 is equivalent to 0 + A(x1, . . . , xp) = B(x1, . . . , xp),
where 0, A(x1, . . . , xp), B(x1, . . . , xp) ∈ T . We choose any bijection
τ : {1, . . . , n} −→ T such that τ(1) = x1, . . . , τ(p) = xp, and τ(p + 1) = 0.
Let H denote the set of all equations from En which are identities in
Z[x1, . . . , xp], if xi = τ(i) for each i ∈ {1, . . . , n}. Since τ(p + 1) = 0, the
equation xp+1 + xp+1 = xp+1 belongs to H . We define T as H ∪ {xp+1 + xs = xt},
where s = τ−1(A(x1, . . . , xp)) and t = τ−1(B(x1, . . . , xp)). For each x̃1, . . . , x̃p ∈ K
with D(x̃1, . . . , x̃p) = 0, the sought-for elements x̃p+1, . . . , x̃n ∈ K exist, are unique,
and satisfy

∀i ∈ {p + 1, . . . , n} x̃i = τ(i)[x1 7→ x̃1, . . . , xp 7→ x̃p]

�

For a positive integer n, let f (n) denote the greatest finite total number of
solutions of a subsystem of En in integers x1, . . . , xn. Obviously, f (1) = 2 as the
equation x1 · x1 = x1 has exactly two integer solutions.

Lemma 2. For each positive integer n, f (n + 1) ≥ 2 · f (n) > f (n).

Proof. If r is a positive integer and a system S ⊆ En has exactly r solutions in
integers x1, . . . , xn, then the system S ∪ {xn+1 · xn+1 = xn+1} ⊆ En+1 has exactly 2r
solutions in integers x1, . . . , xn+1. �

Corollary. The function f is strictly increasing.

A function β : N \ {0} → N \ {0} is said to majorize a function
α : N \ {0} → N \ {0} provided α(n) ≤ β(n) for any n.

Theorem 1. If a non-decreasing function g : N \ {0} → N \ {0} majorizes f , then
a finite-fold Diophantine representation of g does not exist.

Proof. Assume, on the contrary, that there is a finite-fold Diophantine
representation of g. It means that there is a polynomial W(x1, x2, x3, . . . , xm) with
integer coefficients such that
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(6) for any non-negative integers x1, x2,

(x1, x2) ∈ g⇐⇒ ∃x3, . . . , xm ∈ N W(x1, x2, x3, . . . , xm) = 0

and for each non-negative integers x1, x2 at most finitely many tuples
(x3, . . . , xm) ∈ Nm−2 satisfy W(x1, x2, x3, . . . , xm) = 0. By Lemma 1, there is a
formula Φ(x1, x2, x3, . . . , xs) such that

(7) s ≥ max(m, 3) and Φ(x1, x2, x3, . . . , xs) is a conjunction of formulae
of the forms xi = 1, xi + x j = xk, xi · x j = xk (i, j, k ∈ {1, . . . , s})
which equivalently expresses that W(x1, x2, x3, . . . , xm) = 0 and each
xi (i = 1, . . . ,m) is a sum of four squares.

Let S denote the following system

a · a = A
b · b = B
c · c = C
d · d = D

A + B = u1

C + D = u2

u1 + u2 = u3

ã · ã = Ã
b̃ · b̃ = B̃
c̃ · c̃ = C̃
d̃ · d̃ = D̃

Ã + B̃ = ũ1

C̃ + D̃ = ũ2

ũ1 + ũ2 = ũ3

u3 + ũ3 = x2

t1 = 1
t1 + t1 = t2

t2 · t2 = t3

t3 · t3 = t4

. . .
ts−1 · ts−1 = ts

ts · ts = ts+1

ts+1 · ts+1 = x1

all equations occurring in Φ(x1, x2, x3, . . . , xs)
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with 2s + 23 variables. The system S equivalently expresses the following
conjunction:((

a2 + b2 + c2 + d2
)
+

(
ã2 + b̃2 + c̃2 + d̃2

)
= x2

)
∧

(
x1 = 22s

)
∧Φ(x1, x2, x3, . . . , xs)

Conditions (6)-(7) and Lagrange’s four-square theorem imply that the system S
is satisfiable over integers and has only finitely many integer solutions. Let L
denote the number of integer solutions to S . If an integer tuple solves S , then
x1 = 22s

and x2 = g(x1) = g
(
22s)

. Since the equation u3 + ũ3 = x2 belongs to S

and Lagrange’s four-square theorem holds, L ≥ g
(
22s)

+ 1. The definition of f
implies that

L ≤ f (2s + 23) (8)

Since g majorizes f ,
f (2s + 23) < g (2s + 23) + 1 (9)

Since s ≥ 3 and g is non-decreasing,

g (2s + 23) + 1 ≤ g
(
22s)

+ 1 (10)

Inequalities (8)-(10) imply that L < g
(
22s)

+ 1, a contradiction. �

Theorem 2. If the question of the title has a positive answer, then there
is a computable strictly increasing function g : N \ {0} → N \ {0} such that g
majorizes f and a finite-fold Diophantine representation of g does not exist.

Proof. For each positive integer r, there are only finitely many Diophantine
equations whose lengths are not greater than r, and these equations can be
algorithmically constructed. This and the assumption that the question of
the title has a positive answer imply that there exists a computable function
δ : N \ {0} → N \ {0} such that for each positive integer r and for each Diophantine
equation whose length is not greater than r, δ(r) is greater than the number
of integer solutions if the solution set is finite. There is a computable
function ψ : N \ {0} → N \ {0} such that each subsystem of En is equivalent to
a Diophantine equation whose length is not greater than ψ(n). The function

N \ {0} 3 n
h
7−→ δ(ψ(n)) ∈ N \ {0}
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is computable. The definition of f implies that h majorizes f . The function

N \ {0} 3 n
g
7−→

n∑
i=1

h(i) ∈ N \ {0}

is computable and strictly increasing. Since g majorizes h and h majorizes f ,
g majorizes f . By Theorem 1, a finite-fold Diophantine representation of g does
not exist. �

References
[1] M. Davis, Yu. Matiyasevich, J. Robinson, Hilbert’s tenth problem.

Diophantine equations: positive aspects of a negative solution,
in: Mathematical developments arising from Hilbert problems
(ed. F. E. Browder), Proc. Sympos. Pure Math., vol. 28, Part 2, Amer.
Math. Soc., 1976, 323–378; reprinted in: The collected works of Julia
Robinson (ed. S. Feferman), Amer. Math. Soc., 1996, 269–324.

[2] L. B. Kuijer, Creating a diophantine description of a r.e. set and on the
complexity of such a description, MSc thesis, Faculty of Mathematics and
Natural Sciences, University of Groningen, 2010, http://irs.ub.rug.
nl/dbi/4b87adf513823.

[3] Yu. Matiyasevich, Hilbert’s tenth problem, MIT Press, Cambridge, MA,
1993.

[4] Yu. Matiyasevich, Hilbert’s tenth problem: what was done and what is to
be done. Hilbert’s tenth problem: relations with arithmetic and algebraic
geometry (Ghent, 1999), 1–47, Contemp. Math. 270, Amer. Math. Soc.,
Providence, RI, 2000.

[5] Yu. Matiyasevich, Towards finite-fold Diophantine representations, Zap.
Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 377 (2010),
78–90, ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v377/p078.

pdf.

[6] Th. Skolem, Diophantische Gleichungen, Julius Springer, Berlin, 1938.

6

http://irs.ub.rug.nl/dbi/4b87adf513823
http://irs.ub.rug.nl/dbi/4b87adf513823
ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v377/p078.pdf
ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v377/p078.pdf


[7] A. Tyszka, K. Molenda, M. Sporysz, An algorithm which transforms
any Diophantine equation into an equivalent system of equations of
the forms xi = 1, xi + x j = xk, xi · x j = xk, Int. Math. Forum 8 (2013),
no. 1, 31–37, http://m-hikari.com/imf/imf-2013/1-4-2013/

tyszkaIMF1-4-2013-1.pdf.

Apoloniusz Tyszka
Faculty of Production and Power Engineering
University of Agriculture
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

7

http://m-hikari.com/imf/imf-2013/1-4-2013/tyszkaIMF1-4-2013-1.pdf
http://m-hikari.com/imf/imf-2013/1-4-2013/tyszkaIMF1-4-2013-1.pdf
rttyszka@cyf-kr.edu.pl

