MATEMATYKA DYSKRETNA www.ii.uj.edu.pl/preMD/

Rafał KALINOWSKI and Monika PILŚNIAK

Distinguishing graphs by edge-colourings

Preprint Nr MD 067 (otrzymany dnia 11.06.2013; nowa wersja - 7.12.2013)

> Kraków 2013

Redaktorami serii preprintów Matematyka Dyskretna są: Wit FORYŚ (Instytut Informatyki UJ) oraz Mariusz WOŹNIAK (Katedra Matematyki Dyskretnej AGH)

Distinguishing graphs by edge-colourings^{*}

Rafał Kalinowski and Monika Pilśniak

AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland kalinows,pilsniak@agh.edu.pl

Abstract

We introduce the distinguishing index D'(G) of a graph G as the least number d such that G has an edge-colouring with d colours that is only preserved by the trivial automorphism. This is an analog to the notion of the distinguishing number D(G) of a graph G, which is defined for colourings of vertices. We obtain a general upper bound $D'(G) \leq \Delta(G)$ unless G is a small cycle C_3 , C_4 or C_5 .

We also introduce the distinguishing chromatic index $\chi'_D(G)$ defined for proper edge-colourings of a graph G. A correlation with distinguishing vertices by colour walks introduced in [13] is shown. We prove that $\chi'_D(G) \leq \Delta(G) + 1$ except for four small graphs C_4 , K_4 , C_6 and $K_{3,3}$. It follows that each connected Class 2 graph G admits a minimal proper edge-colouring, i.e., with $\chi'(G)$ colours, preserved only by the trivial automorphism.

Keywords: distinguishing index; distinguishing chromatic index; automorphism; symmetry breaking in graphs Mathematics Subject Classifications: 05C25, 05C80, 03E10