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Abstract

A locally irregular graph is a graph whose adjacent vertices have
distinct degrees. We say that a graph G can be decomposed into k
locally irregular subgraphs if its edge set may be partitioned into k
subsets each of which induces a locally irregular subgraph in G. We
characterize all connected graphs which cannot be decomposed into lo-
cally irregular subgraphs. These are all of odd size and include paths,
cycles and a special class of graphs of maximum degree 3. Moreover
we conjecture that apart from these exceptions all other connected
graphs can be decomposed into 3 locally irregular subgraphs. Using a
combination of a probabilistic approach and some known theorems on
degree constrained subgraphs of a given graph, we prove this statement
to hold for all regular graphs of degree at least 107. We also support
this conjecture by showing that decompositions into three or two such
subgraphs might be indicated e.g. for some bipartite graphs (includ-
ing trees), complete graphs and cartesian products of graphs with this
property (hypercubes for instance). We also investigate a total version
of this problem, where in some sense also the vertices are being pre-
scribed to particular subgraphs of a decomposition. The both concepts
are closely related to the known 1-2-3 Conjecture and 1-2 Conjecture,
respectively, and other similar problems concerning edge colourings.
In particular, we improve the result of Addario-Berry, Aldred, Dalal
and Reed [J. Combin. Theory Ser. B 94 (2005) 237-244] in the case of
regular graphs.

Keywords: locally irregular graph, graph decomposition, edge set parti-
tioning, 1-2-3 Conjecture, 1-2 Conjecture

∗Corresponding author. E-mail: przybylo@wms.mat.agh.edu.pl.
†The research of the third and fourth authors were partially supported by the Polish

Ministry of Science and Higher Education.

1



1 Introduction

All graphs considered are simple and finite. We follow [10] for the notations
and terminology not defined here. Consider a graph G = (V,E). It is well
known that if its order n is at least two, then it cannot be (completely)
irregular, i.e., it must contain a pair of vertices of the same degree. By a
locally irregular graph we shall mean a graph such that the degree of every
vertex is distinct from the degrees of all of its neighbours. In other words, it
is a graph in which the adjacent vertices have distinct degrees. Such graphs
exist for every order n. A natural antonym of the class of these is the family
of regular graphs. In this paper we investigate decompositions of regular, or
more generally any graphs into locally irregular subgraphs. More precisely,
we say that G can be decomposed into k locally irregular subgraphs if its
edge set may be partitioned into k subsets each of which induces a locally
irregular subgraph, i.e., E = E1 ∪ E2 ∪ . . . ∪ Ek with Ei ∩ Ej = ∅ for i 6= j
and Hi := (V,Ei) is locally irregular for i = 1, 2, . . . , k. Note that instead of
decomposing the graph G, we may alterably paint its edges with k colours
so that every colour class induces a locally irregular subgraph in G. Such
colouring shall be called a locally irregular k-edge colouring of G. The colour
classes of this naturally define locally irregular subgraphs of G making up
its decomposition. Thus the two notions shall be used equivalently. Note
that if an edge uv ∈ E has colour i assigned by a locally irregular edge
colouring, then the numbers of edges coloured with i incident with u and v
must be distinct. As usual we shall be most interested in the least number
of colours necessary to create such a colouring. However, not every graph
admits any such colour assignment, this does not exist e.g. for the path
P2 (on 2 vertices). Other exceptions are discussed further on. Apart from
these, we suspect that three colours (k = 3) are sufficient for all remaining
graphs, cf. Conjecture 3.4. Intriguingly, the subject of our investigations
binds several other related problems, which in fact motivated our research.

1.1 1-2-3 Conjecture

Consider another concept of introducing local irregularity in a graph by
means of edge colourings (or weightings). Let c : E → {1, 2, . . . , k} be
an edge colouring of G with positive integers. For every vertex v we then
denote by sc(v) :=

∑
u∈N(v) c(uv) the sum of its incident colours and call it

the weighted degree of v. We say that c is a neighbour sum distinguishing
k-edge colouring of G if sc(u) 6= sc(v) for all adjacent vertices u, v in G.
Another interpretation of this concept, introduced by Karoński,  Luczak and
Thomason [17], asserts that instead of assigning an integer to every edge,
we multiply it the corresponding number of times in order to create a locally
irregular multigraph of G, i.e., a multigraph whose neighbours have distinct
degrees. This problem came to life as a descendant of the graph invariant
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known as the irregularity strength of a graph, where as above, given a graph,
one strives to create of it a multigraph in which all vertices have distinct
degrees, see e.g. [4, 9, 11, 15, 18, 19, 21] for further details and some of the
most up-to-date results and open problems concerning this parameter. It
is also worth mentioning that the concept of the irregularity strength was
motivated by the study of Chartrand, Erdős, Oellermann et al. concerning
‘irregular graphs’ (see [5, 6, 8]), whose research are also closely related to
ours.

In [17] Karoński,  Luczak and Thomason posed the following elegant
problem, known as the 1-2-3 Conjecture.

Conjecture 1.1 (1-2-3 Conjecture) There exists a neighbour sum dis-
tinguishing 3-edge colouring of every graph G containing no isolated edges.

Thus far it is known that a neighbour sum distinguishing 5-edge colouring
exists for every graph without isolated edges, see [16]. On the other hand,
Addario-Berry, Dalal and Reed proved in [3] the following result for random
graphs.

Theorem 1.2 If G is a random graph (chosen from Gn,p for a constant
p ∈ (0, 1)), then asymptotically almost surely, there exists a neighbour sum
distinguishing 2-edge colouring of G.

This fact gets even more interesting in view of our research if combined with
the following straightforward observation.

Observation 1.3 If G is a regular graph, then there exists a neighbour
sum distinguishing 2-edge colouring of G if and only if there exists a locally
irregular 2-edge colouring of G.

To see that it holds, consider an edge colouring c : E → {1, 2} of a regular
graph G and any edge uv ∈ E. If c is neighbour sum distinguishing, then
sc(u) 6= sc(v) implies that u, v must be incident with different numbers of
edges coloured with 1 or 2, but since d(u) = d(v), they must differ in fre-
quencies of the both colours. Thus u, v have distinct degrees in the subgraph
induced in G by the class of the colour c(uv), regardless of whether c(uv) = 1
or c(uv) = 2. The colouring c must therefore also be locally irregular. A
similar argument works the other way round. Note that the corresponding
equivalence does not hold in case of k-edge colourings if k ≥ 3 (consider e.g.
C5).

There were quite a few attempts to tackle 1-2-3 Conjecture before the set
of required colours was narrowed down to {1, 2, 3, 4, 5}, see [1, 3, 16, 17, 24].
In fact in the first paper on 1-2-3 Conjecture [17] the authors proved only
that a finite collection of (183 independent over the field of the rationals) real
numbers admitted as edge colours always suffice to distinguish neighbours
by sums. For this goal, they showed that for every graph without isolated
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edges, there is a colouring c : E → {1, 2, . . . , k}, with k = 183, such that the
end-vertices of every edge obtain distinct multisets of their incident colours.
Such colouring c shall be called a neighbour multiset distinguishing k-edge
colouring. The mentioned result was then greatly improved by Addario-
Berry et al. [2], who proved the following.

Theorem 1.4 There exists a neighbour multiset distinguishing 4-edge colour-
ing of every graph G containing no isolated edges.

Theorem 1.5 There exists a neighbour multiset distinguishing 3-edge colour-
ing of every graph G of minimum degree δ ≥ 1000.

Note that every locally irregular k-edge colouring is also a neighbour multiset
distinguishing k-edge colouring. This however does not have to be the case
the other way round, unless we narrow down our concern to 2-edge colourings
of regular graphs. Though the problem of locally irregular decompositions
is interesting for general graphs, in this paper we focus mainly, but not
exclusively on regular ones, which are in some sense the least irregular among
all. The main result of this paper is a strengthening of Theorem 1.5 for
this family of graphs. Namely, we prove that if G is a regular graph of
sufficiently large minimum degree, then there exists its locally irregular 3-
edge colouring (which is the more a neighbour multiset distinguishing 3-
edge colouring of G), see Theorem 5.1 in section 5. Its proof combines
probabilistic approach with some known theorems on degree constrained
subgraphs of a given graph from [1], see section 4. We also settle for which
graphs a decomposition to any number of locally irregular subgraphs exists
at all. This and other results on locally irregular decompositions, concerning
mainly bipartite graphs, complete graphs and cartesian products of graphs
are contained in section 3. We begin however with a short discussion on
a total version of our problem, since it was in fact the starting point for
introducing all concepts contained in this paper. In the following, given two
graphs H1 = (V1, E1), H2 = (V2, E2), usually subgraphs of a host graph G,
by H1 ∪H2 we shall mean the graph (V1 ∪ V2, E1 ∪E2). Moreover, we shall
write H2 ⊂ H1 if V2 ⊂ V1 and E2 ⊂ E1, and in case of H2 ⊂ H1, we shall
also write H1 − E(H2) to denote the graph obtained from H1 by removing
the edges of H2. From now on, given a subset E′ of edges of a given graph
G = (V,E), the graph induced by E′ shall be understood as G′ := (V ′, E′)
where V ′ is the set of the end-vertices of all edges in E′ (note that the ‘local
irregularity’ of G′ is not altered by whether its vertex set is V or V ′).

2 1-2 Conjecture and Locally Irregular Total Colour-
ings

In [23] the following problem related to 1-2-3 Conjecture was introduced.
Let c : E ∪ V → {1, 2, . . . , k} be a total colouring of a graph G = (V,E)
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with positive integers. For every vertex v we then denote by tc(v) := c(v) +∑
u∈N(v) c(uv) the sum of its incident colours and the colour of v, and call it

the total weighted degree of v. We say that c is a neighbour sum distinguishing
k-total colouring of G if tc(u) 6= tc(v) for all adjacent vertices u, v in G.

Conjecture 2.1 (1-2 Conjecture, [23]) There exists a neighbour sum dis-
tinguishing 2-total colouring of every graph G.

In this context, the following best upper bound is due to Kalkowski [14].

Theorem 2.2 There exists a neighbour sum distinguishing 3-total colouring
of every graph G.

For any total colouring c : E ∪ V → {1, 2, . . . , k}, v ∈ V and i ∈
{1, 2, . . . , k}, by ci(v) we shall mean the number of the elements of the set
{v} ∪ {vw : w ∈ N(v)} coloured with i (hence c1(v) + c2(v) + . . . + ck(v) =
d(v) + 1). The total colouring c shall be called a locally irregular k-total
colouring when, similarly as in the case of edge colourings, for every edge
uv ∈ E, if c(uv) = i, then ci(u) 6= ci(v). We ask whether the following is
true.

Conjecture 2.3 There exists a locally irregular 2-total colouring of every
graph G.

The main reason for our interest with locally irregular total colourings, and
in particular with the conjecture above, were our endeavours towards proving
1-2 Conjecture for regular graphs (see [22, 23]), for which Conjectures 2.1
and 2.3 are equivalent.

Observation 2.4 If G is a regular graph, then there exists a neighbour
sum distinguishing 2-total colouring of G if and only if there exists a locally
irregular 2-total colouring of G.

This holds by the same reasoning as Observation 1.3. In [23] it was in par-
ticular proven that 1-2 Conjecture is true for complete graphs, 3-colourable
graphs (i.e. with χ(G) ≤ 3) and 4-regular graphs. Thus by observation 2.4
we obtain the following conclusion.

Corollary 2.5 If G is a d-regular graph with d ≤ 4 or a complete graph,
then there exists its locally irregular 2-total colouring.

Proposition 2.6 If G = (A,B; E) is a bipartite graph, then there exists its
locally irregular 2-total colouring.

Proof. We define the total colouring c of G as follows. First let us colour
all edges of G with colour 1. Then we colour with 1 every vertex v such that
v ∈ A and d(v) is odd or v ∈ B and d(v) is even. The remaining vertices of
G are coloured by 2. Note that this way every edge of uv ∈ E with u ∈ A,
v ∈ B is coloured with 1, while c1(u) ≡ 0 (mod 2) and c1(v) ≡ 1 (mod 2),
hence c1(u) 6= c1(v).
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Observation 2.7 If there exists a locally irregular k-edge colouring of a
graph G, then there exists a locally irregular k-total colouring of G.

Indeed, given any locally irregular edge colouring of G it is sufficient to
extend it by colouring every vertex with the same colour, say 1. By Obser-
vation 2.7 all our further results concerning edge colourings (decompositions)
transfer directly to the total ones.

Let us finally note that we may also use the terminology of decomposi-
tions in case of the concept investigated in this section if we first introduce
the following definitions. A total graph is an ordered triple (V0, V1, E), where
V0, V1 are called the sets of empty and solid vertices, resp., V0 ∩V1 = ∅, and
E, the set of edges, is a subset of

(
V0∪V1

2

)
(E∩(V0∪V1) = ∅). Such total graph

is called locally irregular if for every edge uv ∈ E, the degree of u is distinct
from the degree of v, where by the degree of a vertex w we mean the number
of edges in E containing w plus 1 if w ∈ V1 (or plus 0 if w ∈ V0). Then every
locally irregular k-total colouring c : E ∪ V → {1, 2, . . . , k} of G is equiv-
alent to a decomposition of G into k locally irregular total (sub-)graphs
H1,H2, . . . ,Hk, where Hi = (V i

0 , V i
1 , Ei) with Ei = {e ∈ E : c(e) = i},

V i
1 = {v ∈ V : c(v) = i} and V i

0 = V r V i
1 . We thus believe that virtually

every graph G can be decomposed into two locally irregular total graphs,
see Conjecture 2.3.

3 Decompositions into Locally Irregular Subgraphs

As mentioned, there are some exceptions in case of edge colourings, i.e.,
there exist graphs which cannot be decomposed into any number of locally
irregular subgraphs.

Proposition 3.1 If Pn is a path with n vertices, then there exists its locally
irregular 2-edge colouring if n is odd, but there does not exist any locally
irregular edge colouring of Pn otherwise.

Proof. Note that all connected subgraphs of any path are paths too, while
the only locally irregular path is P3 (and P1). Thus every locally irregular
subgraph of a path must contain an even number of edges, hence the second
part of the thesis follows. If n is odd, hence Pn is of even length, then we
colour every second pair of consecutive edges with colour 1 and the remaining
every second pair of edges with colour 2. (Obviously, for P3 and P1 we do
not need two colours.)

Proposition 3.2 If Cn is a cycle with n vertices, then there exists its locally
irregular 2-edge colouring if n ≡ 0 (mod 4), or a locally irregular 3-edge
colouring if n ≡ 2 (mod 4), but there does not exist any locally irregular
edge colouring of Cn otherwise.
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Proof. If n ≡ 0 (mod 4), then similarly as for paths, we colour the subse-
quent pairs of consecutive edges with 1 and 2 alternately. If n ≡ 2 (mod 4)
we do the same, but we start by painting one pair of consecutive edges with
the colour 3. Since every proper subgraph of Cn is a path, the last statement
from the thesis follows by the same argument as for paths.

All the remaining exceptions belong to the family T defined inductively
as follows.

• The triangle K3 belongs to T.

• Every other graph of this family may be constructed by taking an
auxiliary graph F which might either be a path of even length or
a path of odd length with a triangle glued to one of its ends, then
choosing a graph G ∈ T containing a triangle with at least one vertex,
say v, of degree 2 in G, and finally identifying v with a vertex of degree
1 of F .

Note that every member of this family has a ‘tree-like structure’ and
is of odd size. Less formally, T might be characterized as the family of
connected graphs whose every member G has maximum degree ∆ ≤ 3 and
circumference (the maximum length of its cycle) equal to 3, and which
consists of a system of paths and triangles arranged so that the length of
every path joining two triangles is odd, the length of every path joining a
triangle with a vertex of degree 1 is even and every vertex of degree 3 belongs
to exactly one triangle.

We shall now prove that no member of this family can be decomposed
into locally irregular subgraphs. The proof that the remaining connected
graphs (except for odd paths and cycles) can be decomposed into such sub-
graphs is a bit more complex and shall be included at the end of this section,
see Theorem 3.13.

Observation 3.3 If G ∈ T, then there does not exist any locally irregular
edge colouring of G.

Proof. Suppose that G ∈ T is a minimal counterexample to the thesis, i.e.,
there exists a locally irregular edge colouring c : E → {1, 2, . . . , k} of G, but
there does not exist such colouring for any other member of T with fewer
edges than G. Let vertices u, v, w induce a triangle in G. Note that all
edges of this triangle cannot have the same colour assigned by c, since then
all of them would be neighbours of degree 2 or 3 in the subgraph induced
by this colour in G, a contradiction. Thus one of these edges must have a
unique colour prescribed. Without the loss of generality we may assume that
c(uv) = 1, c(uw) 6= 1, c(vw) 6= 1 and at least one of the ends of uv, say u,
is incident with one edge outside the triangle, say uu′ ∈ E with u′ /∈ {v, w},
which is coloured with 1 (since otherwise the subgraph induced by the colour
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1 in G would contain an isolated edge). Denote by Gu′ the component of
G − u which contains u′, and note that the subgraph G′ induced in G by
V (Gu′)∪{u, v} belongs to T or is an odd length path. Moreover (since even
if v is incident with an edge outside the triangle, then this edge cannot be
coloured with 1) the decomposition into locally irregular subgraphs induced
by c in G is also valid if narrowed down to its subgraph G′, a contradiction.

All our further results seem to support the following presumption, which
we believe to be true.

Conjecture 3.4 Every connected graph G which does not belong to T and
is not an odd length path nor an odd length cycle can be decomposed into 3
locally irregular subgraphs.

Theorem 3.5 There exists a locally irregular 3-edge colouring of every com-
plete graph Kn of order n ≥ 4.

Proof. The proof is inductive with respect to n. For this reason we will
have to prove a slightly stronger statement. Namely, for every n ≥ 4 we
shall prove that there exists a locally irregular 3-edge colouring of Kn in
which there exists no vertex whose all (n − 1) incident edges are coloured
with 1 or there exists no vertex whose all (n−1) incident edges are coloured
with 2.

For K4 we may easily find a required edge colouring with every of the
colours 1, 2, 3 used to paint two incident edges. For n ≥ 5, we first fix a
colouring guaranteed by the induction hypothesis for a subgraph of Kn iso-
morphic with Kn−1. If no vertex of Kn−1 is incident exclusively with edges
coloured with 1 (or 2), then we colour the remaining edges with 1 (or 2,
resp.). It is straightforward to notice that such edge colouring of Kn fulfills
our requirements.

Note that in the colourings of Kn, n ≥ 4, generated by the inductive
procedure above colour 3 appears only on two edges. By essentially the
same reasoning we may also prove that if we remove two or even one edge
from Kn, then two colours are sufficient.

Proposition 3.6 If Kn is a complete graph of order n ≥ 4, then there exist
locally irregular 2-edge colourings of Kn− e and Kn−{e, e′}, where e, e′ are
arbitrary edges of Kn.

Obviously, sometimes even one colour is sufficient. The only graphs for
which there exists a locally irregular 1-edge colouring are those which are
locally irregular themselves. There are numerous examples of infinite classes
of such graphs, e.g., the family of stars K1,m with m ≥ 2. More generally,
the following is true.
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Proposition 3.7 If Kp,q is a complete bipartite graph with q ≥ 2 (or p ≥
2), then there exists its locally irregular 2-edge colouring, or even a locally
irregular 1-edge colouring if p 6= q.

Proof. If p 6= q, then Kp,q is obviously locally irregular. On the opposite, if
p = q, then it gets locally irregular if we remove one vertex (together with its
incident edges) of it. Since the removed edges form a star K1,q with q ≥ 2,
the thesis follows.

Though the class of bipartite graphs appeared to be fairly easy while
investigating total colourings, see Proposition 2.6, no corresponding general
result for edge version is known. By Proposition 3.1, we even know that no
locally irregular edge colouring exists for infinitely many bipartite graphs,
even if we narrow down our concern to trees exclusively. In [13] Havet
et al. proved that there exists a neighbour multiset distinguishing 2-edge
colouring for every bipartite graph with minimum degree at least three. We
thus obtain the following conclusion.

Corollary 3.8 There exists a locally irregular 2-edge colouring of every reg-
ular bipartite graph G with minimum degree δ ≥ 3.

Theorem 3.9 If T is a tree which is not an odd length path, then there
exists its locally irregular 3-edge colouring.

Proof. Let us first note that except for the case of P2 and P4, there exists
a locally irregular 2-edge colouring for every spidey, i.e., a tree of radius
at most two consisting of a central vertex of arbitrary degree, say w, and
the remaining vertices of degree at most 2 which are at distance at most 2
from w. Indeed, if d(w) ≥ 3, then the spidey is locally irregular itself, while
otherwise it is just a path of length at most 4.

We now prove the theorem for all trees by induction with respect to their
order n. For n ≤ 5, every tree is a spidey, hence the thesis follows by our
observation above. Assume then that n ≥ 6 and T is not a spidey nor an
odd length path.

Fix any vertex r as a root of T . As usual the neighbour u of a vertex v
which is closer to r than v is called the father of v, while v is then called the
son of u. Moreover, every vertex v′ 6= v with v on the unique path joining
v′ with r is called a descendant of v. Let A be the set of vertices in T which
are not leaves but have no descendant at distance more than 2. For every
v ∈ A, let Tv be a subtree (of radius at most 2) induced in T by v and all
its descendants.

Suppose that at least one of such subtrees Tv is a spidey (with the central
vertex v) other than P2 and P4 (hence v 6= r, since T is not a spidey itself).
Choose any such Tv and denote the father of v in T by u. Then by the
induction hypothesis we may find a locally irregular 3-edge colouring of a
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subtree T ′ induced in T by all vertices except the descendants of v unless
T ′ is an odd length path, or a locally irregular 2-edge colouring of T ′ − v
otherwise. In both cases, a subtree induced by the remaining edges of T is
a spidey different from P2 and P4 (in the second case it follows from the
fact that T is not an odd length path) incident with at most one already
coloured edge. By our observation from the first paragraph of the proof we
then may use the other two colours to construct a locally irregular 2-edge
colouring of the remaining part of T , hence completing the locally irregular
3-edge colouring of T .

We thus may assume that every subtree Tv, v ∈ A, is not a spidey or is
isomorphic to P2 or P4. Note that every Tv of radius 1 is obviously a spidey,
hence it must be isomorphic to P2, i.e., d(v) = 2. This however means that
every Tv, v ∈ A, is a spidey, i.e., is either P2 or P4. Since T is not a spidey
itself (hence cannot be of radius 1), this finally implies that at least one Tv

is a path P4, where v 6= r. Fix any such Tv and denote the father of v by
u, and the sons of v by v1, v2, where v2 is a leaf and v′1 denotes the leaf
being the only son of v1. Then by the induction hypothesis we may find a
locally irregular 3-edge colouring of a subtree T ′′ induced in T by all vertices
except for v1 and v′1 unless T ′′ is an odd length path, or a locally irregular
2-edge colouring of T ′′−v2 otherwise. In the first of these cases we complete
the locally irregular 3-edge colouring of T by painting the edges v1v

′
1 and

vv1 with a colour which does not appear on any of the remaining two edges
incident with v. In the second one, it is sufficient to paint all the remaining
edges, v1v

′
1, vv1 and vv2, with the same colour as uv. Since then d(v) = 3

and d(u) = 2, the obtained 3-edge colouring shall also be locally irregular.

It is worth mentioning that the result for trees above is sharp, i.e., there
are infinitely many trees which require 3 colours. As an example, let us
consider the following class of graphs. First, join two vertices u and v by an
edge. Then choose any four paths of even lengths (≥ 2), say P1, P2, P3, P4,
and identify one of the ends for each of P1, P2 with u, and finally identify one
of the ends for each of P3, P4 with v. It is easy to verify that for neither of
such trees there exists a locally irregular 2-edge colouring. Numerous more
complex examples might also be constructed. Also many examples of graphs
supporting Conjecture 3.4 might be derived from the result on products of
graphs below. Let us recall that given two graphs, G, H, their cartesian
product G�H is defined as the graph with vertex set V (G)× V (H), where
two vertices (u1, v1), (u2, v2) ∈ V (G)×V (H) are joined by an edge in G�H
if and only if either u1 = u2 and v1v2 ∈ E(H) or u1u2 ∈ E(G) and v1 = v2.

Theorem 3.10 Suppose there exist a locally irregular k-edge colouring of a
graph G and a locally irregular l-edge colouring of a graph H. Then there
exists a locally irregular edge colouring of G�H with at most max{k, l}
colours.
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Proof. Let c1 : E(G) → {1, 2, . . . , k} be a locally irregular k-edge colouring
of a graph G and let c2 : E(H) → {1, 2, . . . , l} be a locally irregular l-edge
colouring of a graph H. We define the edge colouring c of G�H as follows.
Given an edge e with the end-vertices (u1, v1), (u2, v2), we set c(e) = c2(v1v2)
if u1 = u2 or c(e) = c1(u1u2) otherwise. Surely c uses at most max{k, l}
colours. To show that it is locally irregular, without the loss of generality, let
us suppose that c(e) = 1 where e is an edge of G�H with the end-vertices
(u, v1), (u, v2), hence v1v2 ∈ E(H) and c2(v1v2) = 1. The set of neighbours
of the vertex (u, v1) in G�H such that the edges joining them with (u, v1)
are coloured with 1 consists of two disjoint subsets, namely

N
(G)
1 :=

{
(u′, v1) : uu′ ∈ E(G) ∧ c1(uu′) = 1

}
and

N
(H)
1 :=

{
(u, v′1) : v1v

′
1 ∈ E(H) ∧ c2(v1v

′
1) = 1

}
.

Analogously, the set of neighbours of the vertex (u, v2) in G�H such that the
edges joining them with (u, v2) are coloured with 1 consists of the following
two disjoint subsets:

N
(G)
2 :=

{
(u′, v2) : uu′ ∈ E(G) ∧ c1(uu′) = 1

}
and

N
(H)
2 :=

{
(u, v′2) : v2v

′
2 ∈ E(H) ∧ c2(v2v

′
2) = 1

}
.

Note that obviously, |N (G)
1 | = |N (G)

2 |. On the other hand, since v1v2 ∈
E(H), c2(v1v2) = 1 and c2 is a locally irregular edge colouring of H, then
|N (H)

1 | 6= |N (H)
2 |. The ends of our investigated edge e are thus incident with

distinct numbers of edges coloured with 1 in G�H.

Corollary 3.11 There exists a locally irregular 2-edge colouring of every
hypercube Qn with n ≥ 2 .

Proof. It is sufficient to prove that the required edge colourings exist for
n = 2, 3. These can be easily found from scratch, but their existence follows
also by Proposition 3.2 and Corollary 3.8, respectively. The existence of the
desired edge colourings for the remaining hypercubes might then be proven
inductively by Theorem 3.10, since Qn = Qn−2�Q2 for every n ≥ 4.

Using Theorem 3.10 one may also prove that e.g. grids being the carte-
sian products of two even length paths can be decomposed into two locally
irregular subgraphs.

To close this section we shall finally prove that every connected graph
which does not belong to the family T and is not an odd cycle nor an odd
path can be decomposed into locally irregular subgraphs. We need to prove
the following lemma beforehand.
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Lemma 3.12 Let G be a connected graph whose edge set E might be parti-
tioned into two nonempty subsets I and O (i.e., E = I ∪O and I ∩O = ∅)
each of which induces a connected subgraph of G. If |O| ≥ 2, then O con-
tains two incident edges e1, e2 such that E r {e1, e2} induces a connected
graph.

Proof. It is sufficient to prove that we may modify (if necessary) the sets
O, I so that they retain all properties assumed in the hypothesis, but O
consists of exactly two edges. For this goal, as long as |O| ≥ 3 we keep
repeating the following procedure:
Denote by GI , GO the graphs induced by I, O, respectively. Since G is
connected, then GO must contain a vertex, say v, incident with some edge in
I. Let G1, . . . , Gt be the components of GO−v and denote Hi := GO[V (Gi)∪
{v}] for i = 1, . . . , t. If t ≥ 2 and any such Hi contains at least 2 edges, then
we move all the remaining edges of O except for those in Hi to I. Otherwise,
we choose any edge in O incident with v and move it to I.

Since in each step we decrease the number of edges in O, we finally end
up with O consisting of two incident edges.

Theorem 3.13 If G is a connected graph which does not belong to T and
is not an odd length path nor an odd length cycle, then it can be decomposed
into locally irregular subgraphs.

Proof. Every graph which belongs to T or is an odd length path or an odd
length cycle shall be called an exception. We shall prove the theorem by
induction with respect to the number of edges of G. The thesis is obvious
if G contains at most 4 edges, so suppose G = (V,E) is a graph of size at
least 5 which is not an exception.

Note first that we may assume that G contains no vertex of degree 3
whose neighbourhood is an independent set (in G) nor any vertex of degree
at least 4. Indeed, for suppose that v is such a vertex. Then if any component
of G−v is of size at least two, we denote its edges by O (and set I = E rO).
By Lemma 3.12 we may remove two incident edges from this component so
that the remaining edges of G still induce a connected graph, say G′. By
our assumption on v, G′ cannot be an exception, hence by the induction
hypothesis it may be decomposed into locally irregular subgraphs. Suppose
then that every component of G − v consists of at most one edge. If any
of these components is an edge whose both ends are adjacent with v in G,
then for every such edge we remove it together with one of its incident edges
(incident with v). In either case, the rest of the edges of G induce a tree (even
a spidey) which is not an odd length path, and hence the remaining graph
may be further decomposed into locally irregular subgraphs by Theorem 3.9.
We thus in particular obtain that ∆(G) ≤ 3 and every vertex of degree 3
must be incident with a triangle in G.

12



We may additionally assume that G contains no cycles of length greater
than 3. To see that, suppose that C is a cycle of size at least 4 in G. If any
component of the graph G−E(C) is of order at least two, then analogously
as above, by Lemma 3.12 (with O consisting of the edges of this component),
we may remove two incident edges outside C so that the remaining edges
of G induce a connected graph, say G′′. Then we may decompose G′′ by
the induction hypothesis, unless G′′ is a cycle of odd length (larger than
3) itself. It is however an easy exercise to verify that we may decompose
G into locally irregular subgraphs successfully in such a case as well (it is
then sufficient to ‘remove’ from G either a star K1,3 or a path P5 with an
additional hanging edge appended to its middle vertex, to be left with an
even path). We thus may also assume that G has circumference 3 and every
of its vertices of degree 3 is incident with exactly one triangle (hence G is
‘very similar’ to the representatives of T, except for the assumptions on the
lengths of the paths between triangles and pendant vertices).

Now if δ(G) = 1, then we choose any vertex u incident with some pen-
dant vertex and remove two edges joining u with its neighbours of possibly
smallest degrees. Otherwise, G must contain a triangle with two vertices
of degree 2. Then we remove the two edges incident with either of such
vertices. In both cases the remaining edges induce a connected graph which
cannot be an exception (since G would also be an exception otherwise). The
thesis follows then by the induction hypothesis.

In the following section we include a list of theorems which shall be used
to prove our main result on regular graphs, see Theorem 5.1 in section 5.

4 Tools

We shall use the classical tools of the probabilistic method, the Lovász Local
Lemma, see e.g. [7], and the Chernoff Bound, see e.g. [20].

Theorem 4.1 (The Local Lemma; Symmetric Case) Let A1, A2, . . . ,
An be events in an arbitrary probability space. Suppose that each event Ai

is mutually independent of a set of all the other events Aj but at most D,
and that Pr(Ai) ≤ p for all 1 ≤ i ≤ n. If

e · p · (D + 1) ≤ 1, (4.1)

then Pr
(⋂n

i=1 Ai

)
> 0.

Theorem 4.2 (Chernoff Bound) For any 0 ≤ t ≤ np:

Pr(|BIN(n, p)− np| > t) < 2e
− t2

3np ,

where BIN(n, p) is the sum of n independent variables, each equal to 1 with
probability p and 0 otherwise.

13



The following theorem from [1] has already occurred extremely useful
while investigating several related problems (see also [2, 3] for similar degree
theorems and their applications).

Theorem 4.3 Suppose that for some graph G = (V,E) we have chosen, for
every vertex v, two integers:

a−v ∈
[
d(v)

3
− 1,

d(v)
2

]
, a+

v ∈
[
d(v)

2
− 1,

2d(v)
3

]
.

Then there exists a spanning subgraph H of G such that for every v ∈ V :

dH(v) ∈ {a−v , a−v + 1, a+
v , a+

v + 1}.

Corollary 4.4 Given a graph G = (V,E) of minimum degree δ, a positive
integer λ ≤ δ/6, and any assignment

t : V → {0, 1, . . . , λ− 1},

there exists a spanning subgraph H of G such that dH(v) ∈ [d(v)
3 , 2d(v)

3 ] and
dH(v) ≡ t(v) (mod λ) or dH(v) ≡ t(v) + 1 (mod λ) for each v ∈ V .

Proof. Note that for every v ∈ V :⌊
d(v)

2

⌋
−
⌊

d(v)
3

⌋
+ 1 ≥ d(v)− 1

2
− d(v)

3
+ 1 >

d(v)
6

≥ λ,

hence, since both sides of the inequality are integers,⌊
d(v)

2

⌋
−
⌊

d(v)
3

⌋
≥ λ.

Analogously,⌊
2d(v)

3

⌋
−
⌊

d(v)
2

⌋
+ 1 ≥ 2d(v)− 2

3
− d(v)

2
+ 1 >

d(v)
6

≥ λ,

hence, ⌊
2d(v)

3

⌋
−
⌊

d(v)
2

⌋
≥ λ.

Therefore, the sets of integers{⌊
d(v)

3

⌋
+ 1, . . . ,

⌊
d(v)

2

⌋}
and

{⌊
d(v)

2

⌋
, . . . ,

⌊
2d(v)

3

⌋
− 1
}

both contain all remainders modulo λ. The thesis follows then by Theo-
rem 4.3 (it is sufficient to choose a−v , a+

v in these sets, resp., so that a−v , a+
v ≡

t(v) (mod λ)).
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5 Regular Graphs

Theorem 5.1 Every d-regular graph G with d ≥ 107 can be decomposed
into three locally irregular subgraphs.

Proof. Let G = (V,E) be a regular graph of degree d ≥ 107. First
for every vertex v we randomly and independently choose one value in
{0, 1, . . . , dd0.35e − 1}, each with equal probability, and denote it by c1(v).
Then we independently repeat our drawing, i.e., again for every v ∈ V ran-
domly and independently we choose one value in {0, 1, . . . , dd0.35e−1}, each
with equal probability, and denote it by c2(v). For each v ∈ V , let us denote:

A(v) := {u ∈ NG(v) : c1(u) = c1(v)},

B(v) := {u ∈ NG(v) : c2(u) = c2(v)},

C(v) :=
{
u ∈ NG(v) : c1(u) + c2(u) ≡ c1(v) + c2(v) (mod dd0.35e)

}
and note that:

D(v) := B(v) ∩ C(v) = {u ∈ NG(v) : c1(u) = c1(v) ∧ c2(u) = c2(v)}.

We shall first prove the following:

Claim 5.2 With positive probability, for every vertex v ∈ V :

|A(v)|, |B(v)|, |C(v)| ≤ 2d0.65 and (5.1)
|D(v)| ≤ 2d0.3 − 1. (5.2)

Proof. For every v ∈ V , let Xv, Yv, Zv, Tv be the random variables of the
cardinalities of the sets A(v), B(v), C(v), D(v), resp., and let Av, Bv, Cv, Dv

denote the events that Xv > 2d0.65, Yv > 2d0.65, Zv > 2d0.65 and Tv > 2d0.3−
1, respectively. Consider any neighbour u of a given vertex v. Obviously,

Pr (u ∈ A(v)) =
1

dd0.35e
≤ 1

d0.35
,

Pr (u ∈ B(v)) =
1

dd0.35e
≤ 1

d0.35
.

Since for every fixed c1(v), c2(v) (and e.g. c1(u)), the probability that c1(u)+
c2(u) ≡ c1(v) + c2(v) (mod dd0.35e) equals exactly 1/dd0.35e, by the total
probability we also obtain:

Pr (u ∈ C(v)) =
1

dd0.35e
≤ 1

d0.35
.

Finally, since all choices are independent,

Pr (u ∈ D(v)) =
(

1
dd0.35e

)2

≤ 1
d0.7

.
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Consequently, again basing on the fact that all choices are independent,
by Chernoff Bound we obtain (to be strict, we should have first written
below the conditional probability with respect to some fixed value of c1(v),
but since all choices are independent and we would have obtained the same
upper bound regardless of the colour c1(v), then the application of the total
probability would yield what follows):

Pr (Av) = Pr
(
Xv > 2d0.65

)
≤ Pr

(
BIN

(
d,

1
d0.35

)
> 2d0.65

)
≤ Pr

(∣∣∣∣BIN
(

d,
1

d0.35

)
− d0.65

∣∣∣∣ > d0.65

)
< 2e−

d0.65

3 ≤ 2e−
2
7
d0.3

. (5.3)

Analogously,

Pr (Bv) < 2e−
2
7
d0.3

and Pr (Cv) < 2e−
2
7
d0.3

. (5.4)

Finally, again by Chernoff Bound:

Pr (Dv) = Pr
(
Tv > 2d0.3 − 1

)
≤ Pr

(
BIN

(
d,

1
d0.7

)
> 2d0.3 − 1

)
≤ Pr

(∣∣∣∣BIN
(

d,
1

d0.7

)
− d0.3

∣∣∣∣ > d0.3 − 1
)

< 2e−
(d0.3−1)2

3d0.3 ≤ 2e−

„√
6
7 d0.3

«2

3d0.3 = 2e−
2
7
d0.3

(5.5)

for d ≥

(
1

1−
q

6
7

) 10
3

≈ 5, 831.

Since each of the events Av, Bv, Cv and Dv depends only on the random
choices for v and its adjacent vertices, then each such event corresponding
to a vertex v is mutually independent of all other events corresponding to
vertices v′ at distance at least three from v, hence is mutually independent
of all except at most D = 3 + 4d2 other events. Moreover, by (5.3), (5.4)
and (5.5), the probability of each of these events equals at most 2e−

2
7
d0.3

.
In order to apply Theorem 4.1, we thus need to prove that the following
inequality holds (cf. (4.1)):

e2e−
2
7
d0.3

(4 + 4d2) ≤ 1. (5.6)

For this purpose, we shall first show that

f(d) := e
1
7
d0.3 − 5d > 0 (5.7)
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(for d ≥ 107), where f is a function of d (continuous in R+). Note that

f ′(d) =
0.3
7

d−0.7e
1
7
d0.3 − 5,

f ′′(d) =
0.09
49

d−1.7e
1
7
d0.3

(
d0.3 − 49

3

)
,

hence for d ≥
(

49
3

) 10
3 ≈ 11, 056, f ′′(d) ≥ 0 and thus f ′(d) is increasing.

Since at the same time, f ′(9, 425, 780) ≈ 22 > 0, then f ′(d) > 0 for d ≥
9, 425, 780. The fact that f(9, 425, 780) ≈ 3 > 0 thus implies that f(d) > 0
(in particular) for d ≥ 107, hence (5.7) holds. (In fact, 9, 425, 780 is the
smallest integer for which f has a positive value.)

Inequality (5.7) further implies that

e
2
7
d0.3

> 25d2 ≥ 6(4 + 4d2) ≥ e2(4 + 4d2)

(for d2 ≥ 24), hence (5.6) follows. By the Local Lemma we thus obtain that

Pr

(⋂
v∈V

Av ∩Bv ∩ Cv ∩Dv

)
> 0.

Suppose then that we have chosen the assignments c1 and c2 so that (5.1)
and (5.2) hold for every v ∈ V . Note that since |D(v)| is an integer, by (5.2)
we in fact have that |D(v)| ≤ b2d0.3c − 1. Let us temporarily remove from
G all edges uv ∈ E such that c1(u) = c1(v) and denote the graph obtained
by G′. By (5.1), we thus have:

δ(G′) ≥ d− 2d0.65 = d0.3
(
d0.7 − 2d0.35

)
≥ d0.3

(
36d0.35 + 36

)
, (5.8)

where the last inequality, equivalent to d0.7 − 38d0.35 − 36 ≥ 0, holds for
d0.35 ≥ 38+

√
382+4·36
2 , hence for d ≥ 34, 955. By (5.8) we thus obtain:

δ(G′)
6

≥ 6d0.3(d0.35 + 1) ≥ 3b2d0.3cdd0.35e. (5.9)

By Corollary 4.4, we may thus find a subgraph H1 of G′ such that dH1(v)
has one of the two remainders modulo λ = 3b2d0.3cdd0.35e, namely

dH1(v) ≡ 3b2d0.3cc1(v), 3b2d0.3cc1(v) + 1 (mod 3b2d0.3cdd0.35e) (5.10)

for every v ∈ V , and

∆(H1) ≤ 2∆(G′)
3

≤ 2d

3
. (5.11)

We paint the edges of H1 with colour 1. By (5.10), dH1(u) 6= dH1(v) if
c1(u) 6= c1(v), what is fulfilled for every edge uv ∈ E(G′), hence also for
every uv ∈ E(H1), since H1 ⊂ G′. The graph H1 is thus locally irregular.
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Let G1 be the graph obtained from G by removing all (already painted)
edges of H1, i.e., G1 = G− E(H1). By (5.11),

δ(G1) ≥ d

3
. (5.12)

Let us (again temporarily) remove from G1 all edges uv such that c2(u) =
c2(v) or c1(u) + c2(u) ≡ c1(v) + c2(v) (mod dd0.35e), and denote the graph
obtained by G′′. By (5.1) and (5.12),

δ(G′′) ≥ d

3
− 4d0.65 =

d0.3

3
(
d0.7 − 12d0.35

)
≥ d0.3

3
(
108d0.35 + 108

)
, (5.13)

where the last inequality, equivalent to d0.7 − 120d0.35 − 108 ≥ 0, holds for
d0.35 ≥ 120+

√
1202+4·108

2 , hence for d ≥ 890, 679. By (5.13) we thus obtain:

δ(G′′)
6

≥ 6d0.3(d0.35 + 1) ≥ 3b2d0.3cdd0.35e. (5.14)

Let C be the subgraph induced by these edges uv of G1 for which c1(u)+
c2(u) ≡ c1(v) + c2(v) (mod dd0.35e). Note that C and G′′ are edge-disjoint.
For every v ∈ V , denote by

cv := dC(v) = |C(v) ∩NG1(v)| (5.15)

the number of edges uv incident with v in G1 such that c1(u) + c2(u) ≡
c1(v) + c2(v) (mod dd0.35e). Consider the subgraph D induced by these
edges uv of G1 for which c1(u) = c1(v) and c2(u) = c2(v). Note that D ⊂ C.
By (5.2),

∆(D) ≤ b2d0.3c − 1,

and hence, we may (greedily) find a proper vertex colouring

h : V → {0, 1, . . . , b2d0.3c − 1}

of D, where we take e.g. h(v) = 0 if v is not an end of an edge of D. By
Corollary 4.4 and (5.14), we may find a subgraph H2 of G′′ such that

dH2(v) ≡ 3b2d0.3cc2(v) + 3h(v)− cv,

3b2d0.3cc2(v) + 3h(v)− cv + 1 (mod 3b2d0.3cdd0.35e)(5.16)

for every v ∈ V . Then we colour the edges of H2 and C with colour 2,
while the remaining edges of G1 with colour 3. Denote the graphs induced
by the edges coloured with 2 and 3 by H ′

2 and H ′
3, resp., i.e., H ′

2 = H2 ∪ C
and H ′

3 = G − (E(H1) ∪ E(H ′
2)). Then, since H2 and C are edge-disjoint,

by (5.15) and (5.16),

dH′
2
(v) ≡ 3b2d0.3cc2(v) + 3h(v),

3b2d0.3cc2(v) + 3h(v) + 1 (mod 3b2d0.3cdd0.35e) (5.17)
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for every v ∈ V . Therefore, dH′
2
(u) 6= dH′

2
(v) if c2(u) 6= c2(v) or h(u) 6=

h(v). The latter of these two conditions is obviously fulfilled for every edge
uv ∈ E(D) by the definition of h. On the other hand, c2(u) 6= c2(v) for the
remaining edges of H ′

2, by the definitions of C and G′′ (where H2 ⊂ G′′). The
subgraph of G coloured with 2 is thus locally irregular. By (5.10) and (5.17),

dH1(v) + dH′
2
(v) ≡ 3b2d0.3c(c1(v) + c2(v)) + 3h(v),

3b2d0.3c(c1(v) + c2(v)) + 3h(v) + 1,

3b2d0.3c(c1(v) + c2(v)) + 3h(v) + 2 (mod 3b2d0.3cdd0.35e)(5.18)

for every v ∈ V . Since G is d-regular, and hence dH′
3
(v) = d−dH1(v)+dH′

2
(v)

for every v ∈ V , then by (5.18), dH′
3
(u) 6= dH′

3
(v) if c1(u) + c2(u) 6≡ c1(v) +

c2(v) (mod dd0.35e) or h(u) 6= h(v). However, by our construction all edges
uv ∈ E r E(H1) with c1(u) + c2(u) ≡ c1(v) + c2(v) (mod dd0.35e) (i.e.,
the edges of C) were painted with colour 2. The graph H ′

3 is thus locally
irregular too.

6 Concluding Remarks

Note that by Theorem 5.1 and Observation 2.7 we immediately obtain the
following corollary.

Corollary 6.1 There exists a locally irregular 3-total colouring of every d-
regular graph G with d ≥ 107.

By Corollary 4.4 we also directly obtain the following observation.

Corollary 6.2 If G = (V,E) is a d-regular graph with 12χ ≤ d, where χ
is the chromatic number of G, then there exists its locally irregular 2-edge
colouring.

Proof. Let t : V → {0, 2, 4, . . . , 2χ − 2} be a proper vertex colouring of G.
Denote λ := 2χ. Since then λ ≤ d/6, by Corollary 4.4 there exists a span-
ning subgraph H of G such that dH(v) ≡ t(v) (mod λ) or dH(v) ≡ t(v) + 1
(mod λ) for each v ∈ V . Then for every edge uv ∈ E, dH(u) 6= dH(v), hence
also d− dH(u) 6= d− dH(v). The graphs H and G− E(H) thus make up a
decomposition of G into two locally irregular subgraphs.

Analogously as the authors of [3] we thus may derive from Corollary 6.2
another conclusion supporting Conjectures 2.3 and 3.4.

Corollary 6.3 There exists a constant d0 such that if Gd is a random d-
regular graph (sampled uniformly from the family of all d-regular graphs of
order n) for some constant d > d0, then asymptotically almost surely it can
be decomposed into 2 locally irregular subgraphs.
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Proof. By the result of Frieze and  Luczak [12], there exists d′0 such that if
d > d′0 is a constant (and d = o(nθ) for some constant θ < 1/3), then

χ(Gd) ≤ d

2 ln d

(
1 +

32 ln ln d

ln d

)
(6.1)

with probability going to 1 as n → ∞. This means that if d > d′0, then
asymptotically almost surely inequality (6.1) holds. Since for d sufficiently
large, i.e., for d > d′′0, where d′′0 is some (other) constant, inequality (6.1)
implies that χ(Gd) ≤ d

12 , the thesis follows by Corollary 6.2 with d0 :=
max{d′0, d′′0}.

Obviously we are not (yet) able to prove Conjectures 2.3 and 3.4. Using
a generalization of our approach applied in the proof of Theorem 5.1 we
however believe to be able to answer affirmatively to the following question,
which is a weaker version of Conjecture 3.4. If correct, the proof of this fact
shall be significantly more complex than the one of Theorem 5.1, and the
threshold for δ much larger than 107.

Conjecture 6.4 There is a constant D0 such that if G is any graph of
minimum degree δ ≥ D0, then it can be decomposed into 3 locally irregular
subgraphs.

Note that Conjecture 3.4, if proven, implies the one above with D0 = 3.
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