MATEMATYKA DYSKRETNA www.ii.uj.edu.pl/preMD/

Apoloniusz TYSZKA

A function which does not have any finite-fold Diophantine representation and probably equals $\{(1,1)\} \cup \{(n,2^{2^{n-1}}) : n \in \{2,3,4,\ldots\}\}$

Preprint Nr MD 064 (otrzymany dnia 24 01 2013)

Kraków 2013 Redaktorami serii preprintów Matematyka Dyskretna są: Wit FORYŚ, prowadzący seminarium *Słowa, słowa, słowa...* w Instytucie Informatyki UJ oraz Mariusz WOŹNIAK, prowadzący seminarium *Matematyka Dyskretna - Teoria Grafów* na Wydziale Matematyki Stosowanej AGH.

A function which does not have any finite-fold Diophantine representation and probably equals $\{(1,1)\} \cup \{(n,2^{2^{n-1}}): n \in \{2,3,4,\ldots\}\}$

Apoloniusz Tyszka

Abstract

Let $g = \{(1,1)\} \cup \{(n,2^{2^{n-1}}): n \in \{2,3,4,\ldots\}\}$. For a positive integer *n*, let f(n) denote the smallest non-negative integer *b* such that for each system $S \subseteq \{x_i = 1, x_i + x_j = x_k, x_i \cdot x_j = x_k : i, j, k \in \{1,\ldots,n\}\}$ with a finite number of solutions in non-negative integers x_1,\ldots,x_n , all these solutions belong to $[0,b]^n$. We prove that the function *f* does not have any finite-fold Diophantine representation and $g(n) \leq f(n)$ for each *n*. We conjecture that g = f and prove some corollaries of it.

Key words: Davis-Putnam-Robinson-Matiyasevich theorem, Diophantine equation with a finite number of solutions, finite-fold Diophantine representation.

2010 Mathematics Subject Classification: 03B30, 11U05.

The Davis-Putnam-Robinson-Matiyasevich theorem states that every recursively enumerable set $\mathcal{M} \subseteq \mathbb{N}^n$ has a Diophantine representation, that is

$$(a_1,\ldots,a_n) \in \mathcal{M} \iff \exists x_1,\ldots,x_m \in \mathbb{N} \ W(a_1,\ldots,a_n,x_1,\ldots,x_m) = 0$$
 (R)

for some polynomial W with integer coefficients, see [4] and [3]. The polynomial W can be computed, if we know a Turing machine M such that, for all $(a_1, \ldots, a_n) \in \mathbb{N}^n$, M halts on (a_1, \ldots, a_n) if and only if $(a_1, \ldots, a_n) \in \mathcal{M}$, see [4] and [3].

The representation (R) is said to be finite-fold if for any $a_1, \ldots, a_n \in \mathbb{N}$ the equation $W(a_1, \ldots, a_n, x_1, \ldots, x_m) = 0$ has at most finitely many solutions $(x_1, \ldots, x_m) \in \mathbb{N}^m$.

Conjecture 1. ([2, pp. 341–342], [5, p. 42], [6, p. 79]) Each recursively enumerable set $\mathcal{M} \subseteq \mathbb{N}^n$ has a finite-fold Diophantine representation.

Let $\mathcal{R}ng$ denote the class of all rings K that extend \mathbb{Z} . Th. Skolem proved that any Diophantine equation can be algorithmically transformed into an equivalent system of Diophantine equations of degree at most 2, see [7, pp. 2–3] and [4, pp. 3–4]. Let

$$E_n = \{x_i = 1, x_i + x_j = x_k, x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\}\}$$

The following result strengthens Skolem's theorem.

Lemma 1. Let $D(x_1, ..., x_p) \in \mathbb{Z}[x_1, ..., x_p]$. Assume that $d_i = \deg(D, x_i) \ge 1$ for each $i \in \{1, ..., p\}$. We can compute a positive integer n > p and a system $T \subseteq E_n$ which satisfies the following two conditions:

Condition 1. If $K \in \mathcal{R}ng \cup \{\mathbb{N}\}$, then

$$\forall \tilde{x}_1, \dots, \tilde{x}_p \in \mathbf{K} \left(D(\tilde{x}_1, \dots, \tilde{x}_p) = 0 \iff \exists \tilde{x}_{p+1}, \dots, \tilde{x}_n \in \mathbf{K} \left(\tilde{x}_1, \dots, \tilde{x}_p, \tilde{x}_{p+1}, \dots, \tilde{x}_n \right) \text{ solves } T \right)$$

Condition 2. If $\mathbf{K} \in \mathcal{R}ng \cup \{\mathbb{N}\}$, then for each $\tilde{x}_1, \ldots, \tilde{x}_p \in \mathbf{K}$ with $D(\tilde{x}_1, \ldots, \tilde{x}_p) = 0$, there exists a unique tuple $(\tilde{x}_{p+1}, \ldots, \tilde{x}_n) \in \mathbf{K}^{n-p}$ such that the tuple $(\tilde{x}_1, \ldots, \tilde{x}_p, \tilde{x}_{p+1}, \ldots, \tilde{x}_n)$ solves T.

Conditions 1 and 2 imply that for each $\mathbf{K} \in \mathcal{R}ng \cup \{\mathbb{N}\}$, the equation $D(x_1, \ldots, x_p) = 0$ and the system T have the same number of solutions in \mathbf{K} .

Proof. For $K \in \mathcal{R}ng$, Lemma 1 is proved in [10]. We provide the proof for any $K \in \mathcal{R}ng \cup \{\mathbb{N}\}$. Let

$$D(x_1,\ldots,x_p) = \sum a(i_1,\ldots,i_p) \cdot x_1^{i_1} \cdot \ldots \cdot x_p^{i_p}$$

where $a(i_1, \ldots, i_p)$ denote non-zero integers, and let M denote the maximum of the absolute values of the coefficients of $D(x_1, \ldots, x_p)$. Let \mathcal{T} denote the set of all polynomials $W(x_1, \ldots, x_p) \in \mathbb{Z}[x_1, \ldots, x_p]$ such that their coefficients belong to the interval [0, M] and deg $(W, x_i) \leq d_i$ for each $i \in \{1, \ldots, p\}$. Let n denote the cardinality of \mathcal{T} . It is easy to check that

$$n = (M+1)^{(d_1+1)} \cdot \dots \cdot (d_p+1) \ge 2^{2^p} > p$$

We define:

$$A(x_1,\ldots,x_p) = \sum_{a(i_1,\ldots,i_p)>0} a(i_1,\ldots,i_p) \cdot x_1^{i_1} \cdot \ldots \cdot x_p^{i_p}$$

$$B(x_1,\ldots,x_p) = \sum_{a(i_1,\ldots,i_p)<0} -a(i_1,\ldots,i_p) \cdot x_1^{i_1} \cdot \ldots \cdot x_p^{i_p}$$

The equation $D(x_1, \ldots, x_p) = 0$ is equivalent to $0 + A(x_1, \ldots, x_p) = B(x_1, \ldots, x_p)$, where $0, A(x_1, \ldots, x_p), B(x_1, \ldots, x_p) \in \mathcal{T}$. We choose any bijection $\tau : \{1, \ldots, n\} \longrightarrow \mathcal{T}$ such that $\tau(1) = x_1, \ldots, \tau(p) = x_p$, and $\tau(p+1) = 0$. Let \mathcal{H} denote the set of all equations from E_n which are identities in $\mathbb{Z}[x_1, \ldots, x_p]$, if $x_i = \tau(i)$ for each $i \in \{1, \ldots, n\}$. Since $\tau(p+1) = 0$, the equation $x_{p+1} + x_{p+1} = x_{p+1}$ belongs to \mathcal{H} . We define T as $\mathcal{H} \cup \{x_{p+1} + x_s = x_t\}$, where $s = \tau^{-1}(A(x_1, \ldots, x_p))$ and $t = \tau^{-1}(B(x_1, \ldots, x_p))$. For each $\tilde{x}_1, \ldots, \tilde{x}_p \in \mathbf{K}$ with $D(\tilde{x}_1, \ldots, \tilde{x}_p) = 0$, the sought-for elements $\tilde{x}_{p+1}, \ldots, \tilde{x}_n \in \mathbf{K}$ exist, are unique, and satisfy

$$\forall i \in \{p+1,\ldots,n\} \ \tilde{x}_i = \tau(i)[x_1 \mapsto \tilde{x}_1,\ldots,x_p \mapsto \tilde{x}_p]$$

For a positive integer *n*, let f(n) denote the smallest non-negative integer *b* such that for each system $S \subseteq E_n$ with a finite number of solutions in non-negative integers x_1, \ldots, x_n , all these solutions belong to $[0, b]^n$. We find that f(1) = 1 and f(2) = 4, because the value of f(1) is attained by the system $\{x_1 = 1\}$ and the value of f(2) is attained by the system $\{x_1 + x_1 = x_2, x_1 \cdot x_1 = x_2\}$.

Lemma 2. For each integer $n \ge 2$, $f(n + 1) \ge f(n)^2 > f(n)$.

Proof. If a system $S \subseteq E_n$ has only finitely many solutions in non-negative integers x_1, \ldots, x_n , then for each $i \in \{1, \ldots, n\}$ the system $S \cup \{x_i \cdot x_i = x_{n+1}\} \subseteq E_{n+1}$ has only finitely many solutions in non-negative integers x_1, \ldots, x_{n+1} .

Theorem. *The function f does not have any finite-fold Diophantine representation.*

Proof. Assume, on the contrary, that there is a finite-fold Diophantine representation of f. By Lemma 1, there is an integer $s \ge 3$ such that for any non-negative integers x_1, x_2 ,

$$(x_1, x_2) \in f \iff \exists x_3, \dots, x_s \in \mathbb{N} \ \Phi(x_1, x_2, x_3, \dots, x_s), \tag{E}$$

where the formula $\Phi(x_1, x_2, x_3, ..., x_s)$ is a conjunction of formulae of the forms $x_i = 1, x_i + x_j = x_k, x_i \cdot x_j = x_k \ (i, j, k \in \{1, ..., s\})$ and

(FF) for each non-negative integers x_1, x_2 at most finitely many tuples $(x_3, \ldots, x_s) \in \mathbb{N}^{s-2}$ satisfy $\Phi(x_1, x_2, x_3, \ldots, x_s)$.

Let S denote the following system

all equations occurring in
$$\Phi(x_1, x_2, x_3, \dots, x_s)$$

$$t_1 = 1$$

$$t_1 + t_1 = t_2$$

$$t_1 + t_2 = t_3$$

$$\dots$$

$$t_1 + t_s = t_{s+1}$$

$$t_{s+1} + t_{s+1} = x_1$$

with 2s + 1 variables. By the equivalence (E), the system *S* is satisfiable over non-negative integers. The condition (FF) implies that *S* has only finitely many solutions in non-negative integers. If a tuple $(x_1, x_2, x_3, ..., x_s, t_1, ..., t_{s+1})$ of non-negative integers solves *S*, then $x_1 = 2s + 2$. By the equivalence (E) and Lemma 2,

$$x_2 = f(x_1) = f(2s + 2) > f(2s + 1)$$

The inequality $x_2 > f(2s + 1)$ contradicts the definition of f(2s + 1), as the system *S* contains 2s + 1 variables.

Let
$$g = \{(1, 1)\} \cup \{(n, 2^{2^{n-1}}): n \in \{2, 3, 4, ...\}\}$$
. The system

$$\begin{cases}
x_1 + x_1 &= x_2 \\
x_1 \cdot x_1 &= x_2 \\
x_2 \cdot x_2 &= x_3 \\
x_3 \cdot x_3 &= x_4 \\
\dots \\
x_{n-1} \cdot x_{n-1} &= x_n
\end{cases}$$

has exactly two integer solutions, namely (0, ..., 0) and $(2, 4, 16, 256, ..., 2^{2^{n-2}}, 2^{2^{n-1}})$. Therefore, $g(n) \le f(n)$ for each *n*. The following Conjecture 2 contradicts Conjecture 1, as it will follow from Corollary 2 or Corollary 3.

Conjecture 2. g = f.

Question. Does there exist an algorithm which to each Diophantine equation assigns an integer which is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if these solutions form a finite set?

Conjecture 2 provides an affirmative answer to the Question and implies the following three corollaries.

Corollary 1. (cf. [1], [8], [9], [11]) There is an algorithm which to each Diophantine equation assigns an integer which is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if these solutions form a finite set.

Corollary 2. The function $\mathbb{N} \ni n \to 2^n \in \mathbb{N}$ does not have any finite-fold Diophantine representation.

Proof. Assume, on the contrary, that there is a finite-fold Diophantine representation of the function $\mathbb{N} \ni n \to 2^n \in \mathbb{N}$. Then, Conjecture 1 is true ([5, p. 42]). This conclusion implies a negative answer to the Question restricted to non-negative integer solutions ([5, p. 42]). By this and Corollary 1, Conjecture 2 is false, a contradiction.

Corollary 3. If a set $\mathcal{M} \subseteq \mathbb{N}$ is recursively enumerable but not recursive, then a finite-fold Diophantine representation of \mathcal{M} does not exist.

Proof. Let $\mathcal{M} \subseteq \mathbb{N}$ be recursively enumerable but not recursive. Assume, on the contrary, that \mathcal{M} has a finite-fold Diophantine representation. It means that there exists a polynomial $W(x, x_1, \ldots, x_m)$ with integer coefficients such that

$$\forall a \in \mathbb{N} \left(a \in \mathcal{M} \iff \exists x_1, \dots, x_m \in \mathbb{N} \ W(a, x_1, \dots, x_m) = 0 \right)$$

and for any $a \in \mathbb{N}$ the equation $W(a, x_1, \dots, x_m) = 0$ has at most finitely many solutions $(x_1, \dots, x_m) \in \mathbb{N}^m$. By Corollary 1, there is a computable function $h : \mathbb{N} \to \mathbb{N}$ such that

$$\forall a, x_1, \dots, x_m \in \mathbb{N} \left(W(a, x_1, \dots, x_m) = 0 \Longrightarrow \max(x_1, \dots, x_m) \le h(a) \right)$$

Hence, we can decide whether a non-negative integer *a* belongs to \mathcal{M} by checking whether the equation $W(a, x_1, \ldots, x_m) = 0$ has an integer solution in the box $[0, h(a)]^m$, a contradiction.

References

[1] M. Cipu, Small solutions to systems of polynomial equations with integer coefficients, An. St. Univ. Ovidius Constanta 19 (2011), no. 2, 89–100, http://www.emis.de/journals/ASUO/mathematics/pdf23/Cipu.pdf, http://www.anstuocmath.ro/mathematics/pdf23/Cipu.pdf.

- [2] M. Davis, Yu. Matiyasevich, J. Robinson, *Hilbert's tenth problem. Diophantine equations: positive aspects of a negative solution,* in: Mathematical developments arising from Hilbert problems (ed. F. E. Browder), Proc. Sympos. Pure Math., vol. 28, Part 2, Amer. Math. Soc., 1976, 323–378; reprinted in: The collected works of Julia Robinson (ed. S. Feferman), Amer. Math. Soc., 1996, 269–324.
- [3] L. B. Kuijer, Creating a diophantine description of a r.e. set and on the complexity of such a description, MSc thesis, Faculty of Mathematics and Natural Sciences, University of Groningen, 2010, http://irs.ub.rug. nl/dbi/4b87adf513823.
- [4] Yu. Matiyasevich, *Hilbert's tenth problem*, MIT Press, Cambridge, MA, 1993.
- [5] Yu. Matiyasevich, *Hilbert's tenth problem: what was done and what is to be done*. Hilbert's tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), 1–47, Contemp. Math. 270, Amer. Math. Soc., Providence, RI, 2000.
- Yu. Matiyasevich, Towards finite-fold Diophantine representations, Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 377 (2010), 78–90, ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v377/p078.pdf.
- [7] Th. Skolem, Diophantische Gleichungen, Julius Springer, Berlin, 1938.
- [8] A. Tyszka, A hypothetical upper bound for the solutions of a Diophantine equation with a finite number of solutions, http://arxiv.org/abs/ 0901.2093.
- [9] A. Tyszka, How to solve a Diophantine equation with a finite number of integer solutions (in Polish), Matematyka-Społeczeństwo-Nauczanie, no. 50, January 2013, 16–20, http://www.cyf-kr.edu.pl/~rttyszka/ msn.pdf.

- [10] A. Tyszka, K. Molenda, M. Sporysz, An algorithm which transforms any Diophantine equation into an equivalent system of equations of the forms $x_i = 1$, $x_i + x_j = x_k$, $x_i \cdot x_j = x_k$, Int. Math. Forum 8 (2013), no. 1, 31–37, http://m-hikari.com/imf/imf-2013/1-4-2013/ tyszkaIMF1-4-2013-1.pdf.
- [11] A. Tyszka, M. Sporysz, A. Peszek, A conjecture on integer arithmetic which implies that there is an algorithm which to each Diophantine equation assigns an integer which is greater than the heights of integer (non-negative integer, rational) solutions, if these solutions form a finite set, Int. Math. Forum 8 (2013), no. 1, 39–46, http://m-hikari.com/imf/imf-2013/ 1-4-2013/tyszkaIMF1-4-2013-2.pdf.

Apoloniusz Tyszka University of Agriculture Faculty of Production and Power Engineering Balicka 116B, 30-149 Kraków, Poland E-mail: rttyszka@cyf-kr.edu.pl