MATEMATYKA DYSKRETNA
 www.ii.uj.edu.pl/preMD/

Apoloniusz TYSZKA

> A function which does
> not have any finite-fold
> Diophantine representation and probably equals
> $\{(1,1)\} \cup\left\{\left(n, 2^{2^{n-1}}\right): n \in\{2,3,4, \ldots\}\right\}$

Preprint Nr MD 064
(otrzymany dnia 2401 2013)

Redaktorami serii preprintów Matematyka Dyskretna są: Wit FORYŚ,
prowadzący seminarium Stowa, stowa, stowa...
w Instytucie Informatyki UJ
oraz
Mariusz WOŹNIAK, prowadzący seminarium Matematyka Dyskretna - Teoria Grafów na Wydziale Matematyki Stosowanej AGH.

A function which does not have any finite-fold Diophantine representation and probably equals $\{(1,1)\} \cup\left\{\left(n, 2^{2^{n-1}}\right): n \in\{2,3,4, \ldots\}\right\}$

Apoloniusz Tyszka

Abstract

Let $g=\{(1,1)\} \cup\left\{\left(n, 2^{2^{n-1}}\right): n \in\{2,3,4, \ldots\}\right\}$. For a positive integer n, let $f(n)$ denote the smallest non-negative integer b such that for each system $S \subseteq\left\{x_{i}=1, x_{i}+x_{j}=x_{k}, x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}$ with a finite number of solutions in non-negative integers x_{1}, \ldots, x_{n}, all these solutions belong to $[0, b]^{n}$. We prove that the function f does not have any finite-fold Diophantine representation and $g(n) \leq f(n)$ for each n. We conjecture that $g=f$ and prove some corollaries of it.

Key words: Davis-Putnam-Robinson-Matiyasevich theorem, Diophantine equation with a finite number of solutions, finite-fold Diophantine representation.

2010 Mathematics Subject Classification: 03B30, 11U05.
The Davis-Putnam-Robinson-Matiyasevich theorem states that every recursively enumerable set $\mathcal{M} \subseteq \mathbb{N}^{n}$ has a Diophantine representation, that is

$$
\begin{equation*}
\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{M} \Longleftrightarrow \exists x_{1}, \ldots, x_{m} \in \mathbb{N} W\left(a_{1}, \ldots, a_{n}, x_{1}, \ldots, x_{m}\right)=0 \tag{R}
\end{equation*}
$$

for some polynomial W with integer coefficients, see [4] and [3]. The polynomial W can be computed, if we know a Turing machine M such that, for all $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}, M$ halts on $\left(a_{1}, \ldots, a_{n}\right)$ if and only if $\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{M}$, see [4] and [3].

The representation (R) is said to be finite-fold if for any $a_{1}, \ldots, a_{n} \in \mathbb{N}$ the equation $W\left(a_{1}, \ldots, a_{n}, x_{1}, \ldots, x_{m}\right)=0$ has at most finitely many solutions $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{N}^{m}$.

Conjecture 1. ([2] pp.341-342], [5] p.42], [6] p. 79]) Each recursively enumerable set $\mathcal{M} \subseteq \mathbb{N}^{n}$ has a finite-fold Diophantine representation.

Let \mathcal{R} ng denote the class of all rings \boldsymbol{K} that extend \mathbb{Z}. Th. Skolem proved that any Diophantine equation can be algorithmically transformed into an equivalent system of Diophantine equations of degree at most 2 , see [7, pp. 2-3] and [4, pp. 3-4]. Let

$$
E_{n}=\left\{x_{i}=1, x_{i}+x_{j}=x_{k}, x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}
$$

The following result strengthens Skolem's theorem.
Lemma 1. Let $D\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{p}\right]$. Assume that $d_{i}=\operatorname{deg}\left(D, x_{i}\right) \geq 1$ for each $i \in\{1, \ldots, p\}$. We can compute a positive integer $n>p$ and a system $T \subseteq E_{n}$ which satisfies the following two conditions:

Condition 1. If $\boldsymbol{K} \in \mathcal{R} n g \cup\{\mathbb{N}\}$, then

$$
\begin{gathered}
\forall \tilde{x}_{1}, \ldots, \tilde{x}_{p} \in \boldsymbol{K}\left(D\left(\tilde{x}_{1}, \ldots, \tilde{x}_{p}\right)=0 \Longleftrightarrow\right. \\
\left.\exists \tilde{x}_{p+1}, \ldots, \tilde{x}_{n} \in \boldsymbol{K}\left(\tilde{x}_{1}, \ldots, \tilde{x}_{p}, \tilde{x}_{p+1}, \ldots, \tilde{x}_{n}\right) \text { solves } T\right)
\end{gathered}
$$

Condition 2. If $\boldsymbol{K} \in \mathcal{R n g} \cup\{\mathbb{N}\}$, then for each $\tilde{x}_{1}, \ldots, \tilde{x}_{p} \in \boldsymbol{K}$ with $D\left(\tilde{x}_{1}, \ldots, \tilde{x}_{p}\right)=0$, there exists a unique tuple $\left(\tilde{x}_{p+1}, \ldots, \tilde{x}_{n}\right) \in \boldsymbol{K}^{n-p}$ such that the tuple $\left(\tilde{x}_{1}, \ldots, \tilde{x}_{p}, \tilde{x}_{p+1}, \ldots, \tilde{x}_{n}\right)$ solves T.

Conditions 1 and 2 imply that for each $\boldsymbol{K} \in \mathcal{R} n g \cup\{\mathbb{N}\}$, the equation $D\left(x_{1}, \ldots, x_{p}\right)=0$ and the system T have the same number of solutions in \boldsymbol{K}.

Proof. For $\boldsymbol{K} \in \mathcal{R} n g$, Lemma 1 is proved in [10]. We provide the proof for any $\boldsymbol{K} \in \mathcal{R} n g \cup\{\mathbb{N}\}$. Let

$$
D\left(x_{1}, \ldots, x_{p}\right)=\sum a\left(i_{1}, \ldots, i_{p}\right) \cdot x_{1}^{i_{1}} \cdot \ldots \cdot x_{p}^{i_{p}}
$$

where $a\left(i_{1}, \ldots, i_{p}\right)$ denote non-zero integers, and let M denote the maximum of the absolute values of the coefficients of $D\left(x_{1}, \ldots, x_{p}\right)$. Let \mathcal{T} denote the set of all polynomials $W\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{p}\right]$ such that their coefficients belong to the interval $[0, M]$ and $\operatorname{deg}\left(W, x_{i}\right) \leq d_{i}$ for each $i \in\{1, \ldots, p\}$. Let n denote the cardinality of \mathcal{T}. It is easy to check that

$$
n=(M+1)^{\left(d_{1}+1\right) \cdot \ldots \cdot\left(d_{p}+1\right)} \geq 2^{2^{p}}>p
$$

We define:

$$
\begin{aligned}
& A\left(x_{1}, \ldots, x_{p}\right)=\sum_{a\left(i_{1}, \ldots, i_{p}\right)>0} a\left(i_{1}, \ldots, i_{p}\right) \cdot x_{1}^{i_{1}} \cdot \ldots \cdot x_{p}^{i_{p}} \\
& B\left(x_{1}, \ldots, x_{p}\right)=\sum_{a\left(i_{1}, \ldots, i_{p}\right)<0}-a\left(i_{1}, \ldots, i_{p}\right) \cdot x_{1}^{i_{1}} \cdot \ldots \cdot x_{p}^{i_{p}}
\end{aligned}
$$

The equation $D\left(x_{1}, \ldots, x_{p}\right)=0$ is equivalent to $0+A\left(x_{1}, \ldots, x_{p}\right)=B\left(x_{1}, \ldots, x_{p}\right)$, where $0, A\left(x_{1}, \ldots, x_{p}\right), B\left(x_{1}, \ldots, x_{p}\right) \in \mathcal{T}$. We choose any bijection $\tau:\{1, \ldots, n\} \longrightarrow \mathcal{T}$ such that $\tau(1)=x_{1}, \ldots, \tau(p)=x_{p}$, and $\tau(p+1)=0$. Let \mathcal{H} denote the set of all equations from E_{n} which are identities in $\mathbb{Z}\left[x_{1}, \ldots, x_{p}\right]$, if $x_{i}=\tau(i)$ for each $i \in\{1, \ldots, n\}$. Since $\tau(p+1)=0$, the equation $x_{p+1}+x_{p+1}=x_{p+1}$ belongs to \mathcal{H}. We define T as $\mathcal{H} \cup\left\{x_{p+1}+x_{s}=x_{t}\right\}$, where $s=\tau^{-1}\left(A\left(x_{1}, \ldots, x_{p}\right)\right)$ and $t=\tau^{-1}\left(B\left(x_{1}, \ldots, x_{p}\right)\right)$. For each $\tilde{x}_{1}, \ldots, \tilde{x}_{p} \in \boldsymbol{K}$ with $D\left(\tilde{x}_{1}, \ldots, \tilde{x}_{p}\right)=0$, the sought-for elements $\tilde{x}_{p+1}, \ldots, \tilde{x}_{n} \in \boldsymbol{K}$ exist, are unique, and satisfy

$$
\forall i \in\{p+1, \ldots, n\} \quad \tilde{x}_{i}=\tau(i)\left[x_{1} \mapsto \tilde{x}_{1}, \ldots, x_{p} \mapsto \tilde{x}_{p}\right]
$$

For a positive integer n, let $f(n)$ denote the smallest non-negative integer b such that for each system $S \subseteq E_{n}$ with a finite number of solutions in non-negative integers x_{1}, \ldots, x_{n}, all these solutions belong to $[0, b]^{n}$. We find that $f(1)=1$ and $f(2)=4$, because the value of $f(1)$ is attained by the system $\left\{x_{1}=1\right\}$ and the value of $f(2)$ is attained by the system $\left\{x_{1}+x_{1}=x_{2}, x_{1} \cdot x_{1}=x_{2}\right\}$.

Lemma 2. For each integer $n \geq 2, f(n+1) \geq f(n)^{2}>f(n)$.
Proof. If a system $S \subseteq E_{n}$ has only finitely many solutions in non-negative integers x_{1}, \ldots, x_{n}, then for each $i \in\{1, \ldots, n\}$ the system $S \cup\left\{x_{i} \cdot x_{i}=x_{n+1}\right\} \subseteq E_{n+1}$ has only finitely many solutions in non-negative integers x_{1}, \ldots, x_{n+1}.

Theorem. The function f does not have any finite-fold Diophantine representation.

Proof. Assume, on the contrary, that there is a finite-fold Diophantine representation of f. By Lemma 1, there is an integer $s \geq 3$ such that for any non-negative integers x_{1}, x_{2},

$$
\begin{equation*}
\left(x_{1}, x_{2}\right) \in f \Longleftrightarrow \exists x_{3}, \ldots, x_{s} \in \mathbb{N} \Phi\left(x_{1}, x_{2}, x_{3}, \ldots, x_{s}\right) \tag{E}
\end{equation*}
$$

where the formula $\Phi\left(x_{1}, x_{2}, x_{3}, \ldots, x_{s}\right)$ is a conjunction of formulae of the forms $x_{i}=1, x_{i}+x_{j}=x_{k}, x_{i} \cdot x_{j}=x_{k}(i, j, k \in\{1, \ldots, s\})$ and
(FF) for each non-negative integers x_{1}, x_{2} at most finitely many tuples $\left(x_{3}, \ldots, x_{s}\right) \in \mathbb{N}^{s-2}$ satisfy $\Phi\left(x_{1}, x_{2}, x_{3}, \ldots, x_{s}\right)$.

Let S denote the following system

$$
\left\{\begin{aligned}
\text { all equations occurring in } \Phi\left(x_{1}, x_{2}, x_{3}, \ldots, x_{s}\right) & \\
t_{1} & =1 \\
t_{1}+t_{1} & =t_{2} \\
t_{1}+t_{2} & =t_{3} \\
& \cdots \\
t_{1}+t_{s} & =t_{s+1} \\
t_{s+1}+t_{s+1} & =x_{1}
\end{aligned}\right.
$$

with $2 s+1$ variables. By the equivalence (E), the system S is satisfiable over non-negative integers. The condition (FF) implies that S has only finitely many solutions in non-negative integers. If a tuple $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{s}, t_{1}, \ldots, t_{s+1}\right)$ of non-negative integers solves S, then $x_{1}=2 s+2$. By the equivalence (E) and Lemma 2

$$
x_{2}=f\left(x_{1}\right)=f(2 s+2)>f(2 s+1)
$$

The inequality $x_{2}>f(2 s+1)$ contradicts the definition of $f(2 s+1)$, as the system S contains $2 s+1$ variables.

$$
\begin{aligned}
& \text { Let } g=\{(1,1)\} \cup\left\{\left(n, 2^{2^{n-1}}\right): n \in\{2,3,4, \ldots\}\right\} \text {. The system } \\
& \qquad\left\{\begin{aligned}
x_{1}+x_{1} & =x_{2} \\
x_{1} \cdot x_{1} & =x_{2} \\
x_{2} \cdot x_{2} & =x_{3} \\
x_{3} \cdot x_{3} & =x_{4} \\
& \cdots \\
x_{n-1} \cdot x_{n-1} & =x_{n}
\end{aligned}\right.
\end{aligned}
$$

has exactly two integer solutions, namely $(0, \ldots, 0)$ and $\left(2,4,16,256, \ldots, 2^{2^{n-2}}, 2^{2^{n-1}}\right)$. Therefore, $g(n) \leq f(n)$ for each n. The following Conjecture 2 contradicts Conjecture 1, as it will follow from Corollary 2 or Corollary 3 .

Conjecture 2. $g=f$.
Question. Does there exist an algorithm which to each Diophantine equation assigns an integer which is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if these solutions form a finite set?

Conjecture 2 provides an affirmative answer to the Question and implies the following three corollaries.

Corollary 1. (cf. [7], [8], [9], [11]) There is an algorithm which to each Diophantine equation assigns an integer which is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if these solutions form a finite set.

Corollary 2. The function $\mathbb{N} \ni n \rightarrow 2^{n} \in \mathbb{N}$ does not have any finite-fold Diophantine representation.

Proof. Assume, on the contrary, that there is a finite-fold Diophantine representation of the function $\mathbb{N} \ni n \rightarrow 2^{n} \in \mathbb{N}$. Then, Conjecture 1 is true ([5] p. 42]). This conclusion implies a negative answer to the Question restricted to non-negative integer solutions ([5, p. 42]). By this and Corollary 1 , Conjecture 2 is false, a contradiction.

Corollary 3. If a set $\mathcal{M} \subseteq \mathbb{N}$ is recursively enumerable but not recursive, then a finite-fold Diophantine representation of \mathcal{M} does not exist.

Proof. Let $\mathcal{M} \subseteq \mathbb{N}$ be recursively enumerable but not recursive. Assume, on the contrary, that \mathcal{M} has a finite-fold Diophantine representation. It means that there exists a polynomial $W\left(x, x_{1}, \ldots, x_{m}\right)$ with integer coefficients such that

$$
\forall a \in \mathbb{N}\left(a \in \mathcal{M} \Longleftrightarrow \exists x_{1}, \ldots, x_{m} \in \mathbb{N} W\left(a, x_{1}, \ldots, x_{m}\right)=0\right)
$$

and for any $a \in \mathbb{N}$ the equation $W\left(a, x_{1}, \ldots, x_{m}\right)=0$ has at most finitely many solutions $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{N}^{m}$. By Corollary [1, there is a computable function $h: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
\forall a, x_{1}, \ldots, x_{m} \in \mathbb{N}\left(W\left(a, x_{1}, \ldots, x_{m}\right)=0 \Longrightarrow \max \left(x_{1}, \ldots, x_{m}\right) \leq h(a)\right)
$$

Hence, we can decide whether a non-negative integer a belongs to \mathcal{M} by checking whether the equation $W\left(a, x_{1}, \ldots, x_{m}\right)=0$ has an integer solution in the box $[0, h(a)]^{m}$, a contradiction.

References

[1] M. Cipu, Small solutions to systems of polynomial equations with integer coefficients, An. St. Univ. Ovidius Constanta 19 (2011), no. 2, 89-100, http://www.emis.de/journals/ASUO/mathematics/pdf23/Cipu.pdf, http://www.anstuocmath.ro/mathematics/pdf23/Cipu.pdf.
[2] M. Davis, Yu. Matiyasevich, J. Robinson, Hilbert's tenth problem. Diophantine equations: positive aspects of a negative solution, in: Mathematical developments arising from Hilbert problems (ed. F. E. Browder), Proc. Sympos. Pure Math., vol. 28, Part 2, Amer. Math. Soc., 1976, 323-378; reprinted in: The collected works of Julia Robinson (ed. S. Feferman), Amer. Math. Soc., 1996, 269-324.
[3] L. B. Kuijer, Creating a diophantine description of a r.e. set and on the complexity of such a description, MSc thesis, Faculty of Mathematics and Natural Sciences, University of Groningen, 2010, http://irs.ub.rug. nl/dbi/4b87adf513823.
[4] Yu. Matiyasevich, Hilbert's tenth problem, MIT Press, Cambridge, MA, 1993.
[5] Yu. Matiyasevich, Hilbert's tenth problem: what was done and what is to be done. Hilbert's tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), 1-47, Contemp. Math. 270, Amer. Math. Soc., Providence, RI, 2000.
[6] Yu. Matiyasevich, Towards finite-fold Diophantine representations, Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 377 (2010), 78-90, ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v377/p078. pdf.
[7] Th. Skolem, Diophantische Gleichungen, Julius Springer, Berlin, 1938.
[8] A. Tyszka, A hypothetical upper bound for the solutions of a Diophantine equation with a finite number of solutions, http://arxiv.org/abs/ 0901.2093
[9] A. Tyszka, How to solve a Diophantine equation with a finite number of integer solutions (in Polish), Matematyka-Społeczeństwo-Nauczanie, no. 50, January 2013, 16-20, http://www.cyf-kr.edu.pl/~rttyszka/ msn.pdf.
[10] A. Tyszka, K. Molenda, M. Sporysz, An algorithm which transforms any Diophantine equation into an equivalent system of equations of the forms $x_{i}=1, x_{i}+x_{j}=x_{k}, x_{i} \cdot x_{j}=x_{k}$, Int. Math. Forum 8 (2013), no. 1, 31-37, http://m-hikari.com/imf/imf-2013/1-4-2013/ tyszkaIMF1-4-2013-1.pdf.
[11] A. Tyszka, M. Sporysz, A. Peszek, A conjecture on integer arithmetic which implies that there is an algorithm which to each Diophantine equation assigns an integer which is greater than the heights of integer (non-negative integer, rational) solutions, if these solutions form a finite set, Int. Math. Forum 8 (2013), no. 1, 39-46, http://m-hikari.com/imf/imf-2013/ 1-4-2013/tyszkaIMF1-4-2013-2.pdf.

Apoloniusz Tyszka

University of Agriculture
Faculty of Production and Power Engineering
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

