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AGH University of Science and Technology

Faculty of Applied Mathematics

Al. Mickiewicza 30, 30-059 Kraków, Poland

January 9, 2013

Abstract

We say that a graph is embeddable if it is a subgraph of its complement. One of the classic
result on graphs embedding says that each graph on n vertices with at most n − 2 edges is
embeddable. The bound on the number of edges cannot be increased because, for example, the
star on n vertices is not embeddable. The reason of this fact is the existence of a vertex with
very high degree. In this paper we prove that by forbidding such vertices, one can significantly
increase the bound on the number of edges. Namely, we prove that if ∆(G) + |E(G)| ≤
2n − f(n), where f(n) = o(n), then G is embeddable. Our result is asymptotically best
possible, since for the star Sn (which is not embeddable) we have ∆(Sn) + |E(Sn)| = 2n− 2.
As a corollary we obtain that a digraphs embedding conjecture by Benhocine and Wojda 1985
is true for digraphs with sufficiently many symmetric arcs.

1 Introduction

We deal with finite, simple graphs without loops or multiple edges. The vertex and edge sets of
a graph G are denoted by V (G) and E(G). The order of G is the number of vertices of G and
is denoted by |G|. The size of G is the number of edges of G and is denoted by ||G||. By NG(x)
we denote the set of vertices adjacent to x in G. The degree (in G) of a vertex x is denoted by
dG(x) and is equal to |NG(x)|. The maximum degree of G is denoted by ∆(G) and is equal to
the maximum among degrees of all vertices of G. For a vertex set X, the set NG(X) denotes the
external neighbourhood of X in G, i.e.

NG(X) = {y ∈ V (G) \X : y is adjacent to some x ∈ X}.

We say that G is embeddable in its complement (G is embeddable, in short) if there is a
permutation σ on V (G) such that if xy is an edge in G, then σ(x)σ(y) is not an edge in G. Thus,
G is embeddable if and only if G is a subgraph of its complement. If σ(x) 6= x for every vertex
x ∈ V (G), then we say that G is fixed-point-free embeddable.

One of the classical results in the theory of graph embedding is the following theorem, proved
independently in [2, 3, 8].

Theorem 1 ([2, 3, 8]) Every n-vertex graph having at most n− 2 edges is embeddable.

This theorem cannot be improved by raising the size of G since for example a star on n vertices is
not embeddable. In [4] and [5] all non-embeddable graphs with order n and size n − 1 and n are
presented, see also [10]. Among the non-embeddable (n, n−1) and (n, n) graphs there are 7 infinite
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Figure 1: Infinite families of non-embeddable (n, n− 1)-graphs and (n, n)-graphs

families, see Figure 1. It is clear from the examples that the strong restriction on the number of
edges in Theorem 1 is a result of the existence of a vertex with very high degree. It seems to be
very likely that by forbidding such vertices one can significantly improve the bound on the size of
a graph in the statement of Theorem 1. We confirm this feeling by proving the following theorem.

Theorem 2 Let G be an n-vertex graph. If ||G||+∆(G) ≤ 2n−14n2/3−20 then G is embeddable.

Note that the bound in Theorem 2 is nearly best possible. Indeed, it cannot be larger than 2n− 6
which follows from Figure 1, see the second example. In fact, this example can be generalized in
the following way.

Example Let V1, ..., Vt−1 be pairwise disjoint subsets with |Vi| = t for i = 1, ..., t− 2 and |Vt−1| =
n − t(t − 2). Furthermore, let x ∈ Vt−1. Let G be a graph with V (G) = V1 ∪ ... ∪ Vt−1 such that
each Vi, i = 1, ..., t − 2, induce a clique, Vt−1 induce a star with center x and there are no other
edges in G. Observe that G is not embeddable if n is sufficiently large. Indeed, suppose that σ

is an embedding of G. If σ(x) ∈ Vi for some i ∈ {1, ..., t − 2}, then the remaining vertices of Vi

must be images of vertices from different sets Vj , j 6= t − 1. However, there are not enough sets
Vj . Suppose that σ(x) ∈ Vt−1. If σ(x) 6= x, then x must be an image of a vertex from some set
Vi with i ∈ {1, ..., t − 2}. Thus, the remaining vertices of Vi have to be mapped on vertices from
different sets Vj with j 6= t− 1. However, there are not enough such sets Vj . Finally, if σ(x) = x,
then the neighbors of x have to be mapped on the vertices from V1 ∪ ...∪Vt−2, which is impossible
if n is sufficiently large.

Furthermore, ∆(G) = n − t(t − 2) − 1, ||G|| = t(t−1)
2 (t − 2) + n − t(t − 2) − 1. Hence,

∆(G)+ ||G|| = 2n− 2+ t(t− 2) t−5
2 . Therefore, the coefficient 2 in Theorem 2 cannot be increased.

∗The author was partially supported by the Polish Ministry of Science and Higher Education.
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2 Lemmas

We use the following result from [6].

Lemma 3 ([6]) Let G be a graph and k, l non-negative integers. If G has an independent set U

of cardinality k + l such that

1. U has k vertices with degree at most l, and its other vertices have degree at most k,

2. the neighborhoods of the vertices of U are pairwise disjoint,

3. there is an embedding σ′ of G− U ,

then there exists an embedding σ of G.

We will need also the following known results.

Theorem 4 ([8]) Let G1 and G2 be graphs of order n with maximum degrees ∆(G1) and ∆(G2),
respectively. If 2∆(G1)∆(G2) < n, then the complete graph Kn contains edge-disjoint copies of G1

and G2.

Theorem 5 ([9]) Every graph of order n and size at most n− 2 is fixed-point-free embeddable.

For convenience, let α(n) = 14n2/3+20. In many places in the proofs we will use the following
observation.

Proposition 6 Let G be a graph of order n such that ||G||+∆(G) ≤ 2n− α(n). If G′ is a graph

that arises from G by deleting m vertices and at least 2m edges, then ||G′||+∆(G′) ≤ 2n′ −α(n′),
where n′ is the order of G′.

Proof. Note that α(n) is increasing with respect to n. Thus,

||G′||+∆(G′) ≤ 2n− α(n)− 2m = 2(n−m)− α(n) ≤ 2n′ − α(n′).

�

Lemma 7 Let G be a graph of order n such that ||G||+∆(G) ≤ 2n− α(n). If n ≤ 2744, then G

is embeddable.

Proof. Note that if n ≤ 2744 then 2n− 14n2/3 − 20 ≤ n− 20. Hence G is embeddable by Theorem
1. �

Lemma 8 Let G be a graph of order n such that ||G|| +∆(G) ≤ 2n − α(n). If ∆(G) ≤ 37, then
G is embeddable.

Proof. If n ≤ 2744, then G is embeddable by Lemma 7. So we may assume that n ≥ 2745. Note
that if ∆(G) ≤ 37, then 2∆2(G) < 2745 ≤ n. Hence G is embeddable by Theorem 5. �

A starry tree is a graph H such that (1) V (H) can be partitioned into four sets V1, V2, V3 and
{x} that each induce a tree, (2) there is at least one edge incident to x, (3) all edges not belonging
to the trees induced by V1, V2 and V3 are incident to x and (4) there are not edges between x and
V2 ∪ V3. A vertex x we call a middle vertex of H. Note that a starry tree is not connected.

Lemma 9 Every starry tree admits an embedding such that its middle vertex is the image of one

of its neighbors.

Proof. Let H be a starry tree. The proof is by induction on |T1|+|T2|+|T3|. If |T1|+|T2|+|T3| = 3,
then the existence of an embedding as required is obvious. Assume that |T1|+ |T2|+ |T3| ≥ 4. We
distinguish two cases:
Case 1. There exists a leaf l in T1 such that the middle vertex x is adjacent to l.
Case 2. All the leaves of T1 are not adjacent to x.
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Consider Case 1. Let u ∈ V (T2), v ∈ V (T3) be vertices such that T2 − u as well as T3 − v

either is disconnected or has at most one vertex. Thus, by Theorem 1 (or trivially in the latter
situation), there is an embedding σ2 of T2 − {u} and there is an embedding σ3 of T3 − {v}.

Suppose first that |T1| = 1 with V (T1) = {l}. Then, the product (l, x, v, u)σ2σ3 is an embed-
ding as required of H. Suppose next that |T1| = 2 with V (T1) = {l, l′}. Then, (l, x, u)(l′, v)σ2σ3 is
an embedding as required of H.

So we may assume that |T1| ≥ 3. Let l′ be the neighbor of l in T1. Let y ∈ V (T1) such
that T1 − {l, l′, y} either is disconnected or has at most one vertex. Thus, by Theorem 1 (or
trivially in the latter situation), there is an embedding σ1 of T1 − {l, l′, y}. Then the product
(l, x, u, y)(l′, v)σ1σ2σ3 is an embedding as required of H.

Consider Case 2. Let L be the set of the leaves of T1, L = {l1, ..., ls}. Note, that |T1| ≥ 3.
Suppose first that all the leaves of T1 have a common neighbor y. Since H is a starry tree (so
there is at least one edge incident to x) and the leaves of T1 are not joined with x, xy is an edge
of H. Let H ′ = H − L. Clearly, H ′ is a starry tree. Thus, by the induction hypothesis there is
an embedding as required σ′ of H ′. Furthermore, since y is the only neighbor of x in H ′, we have
σ′(y) = x. In particular y is not a fixed point of σ′. Thus the product (l1)...(ls)σ

′ (i.e. l1, ..., ls are
fixed points) is an embedding as required of H.

So we may assume that there are l1, l2 ∈ L with neighbors (in T1) y1, y2, respectively, such
that y1 6= y2, y1 6= l2 and y2 6= l1 (recall that |T1| ≥ 3 in this case). Let H ′′ = H−{l1, l2}. Clearly,
H ′′ is a starry tree. Hence, by the induction hypothesis, there is an embedding as required σ ′′ of
H ′′. Then (l1, l2)σ

′′ is an embedding as required of H if σ′′(y1) = y1 or σ′′(y2) = y2. Otherwise,
(l1)(l2)σ

′′ is an embedding as required of H. �

Lemma 10 Let G be a graph with minimum order n such that G is a non-embeddable graph with

||G||+∆(G) ≤ 2n− α(n). Then G has no isolated vertices.

Proof. Suppose for a contradiction, that y is an isolated vertex of G. By Lemma 8, there is x ∈ G

with deg x ≥ 38. Let G′ = G − {x, y}. By Proposition 6, ||G′|| +∆(G′) ≤ 2|G′| − α(|G′|). Thus,
by the minimality assumption there is an embedding σ′ of G′. Then (xy)σ′ is an embedding of G,
a contradiction. �

Lemma 11 Let G be a graph with minimum order n such that G is a non-embeddable graph with

||G||+∆(G) ≤ 2n− α(n). If two vertices of G of degree 1 have different neighbors then G has at

most 20 vertices of degree 1.

Proof. Let V1 denote the set of all vertices of G with degree 1. Suppose for a contradiction,
that |N(V1)| ≥ 2 and |V1| > 20. By Lemma 8 we may assume that G contains a vertex x with
deg x ≥ 38. Let x1, x2 ∈ V1 and y1, y2, y1 6= y2, be the neighbors of x1 and x2 respectively.

Note that y1 and y2 cover at most 7 edges. Indeed, otherwise G′ := G − {x1, x2, y1, y2}
arises from G by deleting 4 vertices and at least 8 edges. Hence, ||G′||+∆(G′) ≤ 2|G′| − α(|G′|),
by Proposition 6. Thus, by the minimality assumption there is an embedding σ ′ of G′. Then,
(x1, y1, x2, y2)σ

′ is an embedding of G. On the other hand, if deg y1 = 1, then G′′ := G−{x, x1, y1}
also satisfies ||G′′|| + ∆(G′′) ≤ 2|G′′| − α(|G′′|) by Proposition 6. Hence, by the minimality
assumption there is an embedding σ′′ of G′′. Then (x, x1, y1)σ

′′ is an embedding of G. The same
argument holds if deg y2 = 1.

Therefore, we may assume that 2 ≤ deg y1 ≤ 6 and 2 ≤ deg y2 ≤ 6, and x is not a neighbor of
any vertex from V1. Moreover, deg y1 +deg y2 ≤ 8 if y1y2 is an edge of G, and deg y1 +deg y2 ≤ 7
otherwise. In particular, y2 has at most 7 − deg y1 neighbors in V1. Analogously, every vertex
other than y1 of G has at most 7 − deg y1 neighbors in V1. Let V ′

1 ⊂ V1 be the set of all vertices
of degree 1 which are at distance equal to 1 or 2 from y1. Let V ′′

1 = V1 \ V ′
1 . Thus, |V ′

1 | ≤
(deg y1 − 1)(7− deg y1) + 1. Hence, |V ′′

1 | ≥ |V1| − (deg y1 − 1)(7− deg y1)− 1. Since every vertex
other than y1 of G has at most 7− deg y1 neighbors in V1, we have

|N(V ′′
1 )| ≥

|V1| − (deg y1 − 1)(7− deg y1)− 1

7− deg y1
.
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Therefore, if |V1| ≥ (deg y1 − 1) (7− deg y1) + 1 + (deg y1 − 1) (7− deg y1) + 1 then |N(V ′′
1 )| ≥

deg y1, so we can find an independent set W ⊂ V1 of deg y1 vertices of degree 1 that have different
neighbors and are at distance at least 3 from y1. It is easy to check that the above statement is
true if |V1| ≥ 20 since the largest number of vertices of degree 1 is needed when deg y1 = 4.

Consider now a graphG′′′ := G−(W∪{x, x1, y1}). Note that in order to obtainG′′′ we remove
from G, deg y1+3 vertices and at least deg y1+(deg y1+deg x−1) ≥ 2(deg y1+3) edges. Therefore,
by Proposition 6, ||G′′′||+∆(G′′′) ≤ 2|G′′′|−α(|G′′′|). Hence, by the minimality assumption, there
is an embedding σ′′′ of G′′′. Furthermore, (x, x1)σ

′′′ is an embedding of G − (W ∪ {y1}). Then,
by Lemma 3, there is an embedding of G, a contradiction. �

3 Proof of Theorem 2

Proof. Assume that G is a counterexample to Theorem 2 with minimum order n. By Lemma 7,
n ≥ 2745 and, by Lemma 8, ∆(G) ≥ 38. Moreover, by Lemma 10, G has no isolated vertices.
Let k = bn1/3c. Let S denote a most numerous independent set consisted of vertices of degrees
2, ..., k which have pairwise disjoint sets of neighbors. By Proposition 6, ||G − S|| +∆(G − S) ≤
2|G− S|+ α(|G− S|). Thus, if S 6= ∅, then, by the minimality assumption, G− S is embeddable.
Hence, by Lemma 3 (with l = k),

|S| < 2k. (1)

Clearly, (1) holds also if S = ∅. Thus,

|N(S)| < 2k2 ≤ 2n2/3. (2)

Let Vj := {v ∈ V (G) \ N(S) : d(v) = j}. By the definition of S, every vertex from V2 ∪ ... ∪ Vk

has a neighbor in N(S). Furthermore, the number nk of vertices of degree greater than k does not
exceed 4n2/3 because 2||G|| =

∑
v∈V (G) dG(v) < 4n. Therefore

|N(N(S))| ≥ |V2 ∪ ... ∪ Vk| ≥ n− |V1| − nk − |N(S)| ≥ n− |V1| − 4n2/3 − |N(S)|. (3)

Now, let U = N(S) ∪ {x} if x is a common neighbor of all vertices of degree 1. Otherwise let
U = N(S). Hence U 6= ∅. Indeed, in the former case x ∈ U . In the latter we also have that U 6= ∅
for otherwise

4n− 28n2/3 − 40 ≥ 2||G|| =
∑

u∈V (G)

d(u) ≥ 20 + (n− 20)n1/3 (4)

because in this case there are at most 20 vertices of degree 1, see Lemma 11. However, for n ≥ 2745
inequality (4) is false. Furthermore, by (3), we have

|N(U)| ≥ n− 20− 4n2/3 − |N(S)| ≥ n− 6n2/3 − 20. (5)

Thus, vertices from U cover at least n − 6n2/3 − 20 edges. Consider now the graph G − U . Let
T1,...,Tp denote connected components of G − U which are trees such that each vertex of Ti is
adjacent to at most one vertex in N(S). We call these components minimal components of G−U .
Let R := G − U − V (T1) − ... − V (Tp). Let r denote the sum of the size of R and the number of
all vertices in R which are joined (in G) with U by at least two edges. Since R does not contain
minimal components, every component of R which is a tree contains a vertex joined with U by at
least two edges. On the other hand, every component of R which is not a tree has at least as many
edges as vertices. Hence,

r ≥ |R|. (6)

Moreover, r counts all edges in R and some edges between R and N(S) which are not counted in
inequality (5), because this inequality counts only the number of vertices in N(U) and ignores the
number of connections.
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Note that there are exactly n − |U | − |R| − p edges in
⋃p

i=1 Ti. Below we show that p is
greater than or equal to 3|U |+∆− |R|+ r. By the assumption and by inequality (5), we have

2n− 14n2/3 − 20−∆ ≥ ||G|| ≥ n− 20− 6n2/3 + (n− |U | − p− |R|) + r

≥ 2n− 8n2/3 − 20− p− |R|+ r,

because |U | ≤ |N(S)|+ 1 ≤ 2n2/3. Thus

p ≥ 6n2/3 − |R|+ r +∆ ≥ 3|U |+∆− |R|+ r. (7)

We will now partition V (G) into two sets each of which induce an embeddable subgraph.
First we will try to assign to each vertex u of U a minimal component which is connected with
u. Let l be the maximum number of minimal components assigned to vertices of U in this way.
If l < |U |, then we assign an arbitrary minimal component to every remaining vertex of U . Let
M′ be the set of minimal components not yet assigned. Now, we assign 2|U | different minimal
components to vertices from U in such a way that every vertex u ∈ U has two minimal components
in M′ disjoint with u. This is possible because |M′| ≥ ∆+2|U |. So, we have constructed l starry
trees with middle vertices in U . Note, that l is the maximum number of starry trees with middle
vertices in U .

Without loss of generality we may assume that we have assigned T1, ..., T3|U |. Let G′ :=
G[U ∪ V (T1) ∪ ... ∪ V (T3|U |)] and G′′ := G − V (G′). Below we will show that there exists an
embedding of G′ such that every vertex from U is the image of its neighbor outside of U .

Suppose first that l = |U |. Then we pack every starry tree in such a way that the middle
vertex is the image of one of its neighbors in the same starry tree (the required embedding exists
by Lemma 9). Let σi be the required embedding of Hi. We claim that the product σ = σ1....σ|U |

is an embedding of G′ as well. Since σi is an embedding of Hi, only edges between different starry
trees may spoil the embedding of G′. Furthermore, every middle vertex is mapped on a non-middle
vertex. Since there are no edges between Ti and Tj for i 6= j, the edges between middle vertices
do not spoil the embedding. It remains to check the edges of the form xy where x is the middle
vertex of some starry tree and y is a non-middle vertex of another starry tree. However, since the
middle vertex of each starry tree is the image of one of its neighbors in the same starry tree and
this neighbor has no other neighbors outside its minimal component, these edges also do not spoil
the embedding.

Suppose now, that l < |U |. Again, we pack every starry tree in such a way that the middle
vertex is the image of one of its neighbors. Moreover, since L is maximal, each remaining vertex
of U has no neighbors in each of the remaining minimal components (otherwise, we would have
an extra starry tree). Hence, by Theorem 5, each of the remaining vertices from U together with
three non-trivial minimal components (not involved in any starry tree) can be packed without fixed
points. We claim that the product of these embeddings is a proper embedding of G′. Suppose for
a contradiction that the image of an edge e in G′ coincides with some other edge e′ in G′. Using
the previous argument, e′ must join a vertex z ∈ U which is not in any starry tree from L with
a non-middle vertex of some starry tree H. Moreover, e must join the middle vertex of H with
some minimal component which is not in any starry tree from L. However, now we can exchange
the two minimal components that contain one of the endvertices of the edges e and e′. This way
we obtain more than l starry trees and we get a contradiction. Hence G′ is embeddable.

Recall that r ≥ ||R||. Furthermore, by (5) we have

||G′′|| = ||R ∪ T3|U ||+1 ∪ ... ∪ Tp|| = ||R||+ |T3|U |+1|+ ...+ |Tp| − (p− 3|U |)

< ||R||+ |T3|U |+1|+ ...+ |Tp| − (r − |R|+∆)− 1

≤ |R|+ |T3|U |+1|+ ...+ |Tp| − 1 = |R ∪ T3|U |+1 ∪ ... ∪ Tp| − 1 = |G′′| − 1.

Thus, by Theorem 1, G′′ is embeddable.
Let σ′, σ′′ denote embeddings of G′ and G′′, respectively. Then σ = σ′σ′′ is an embedding

of G. Suppose for a contradiction that the image of an edge xy in G coincides with some other
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edge σ(x)σ(y) in G. Then x, σ(x) ∈ V (G′) and y, σ(y) ∈ V (G′′). By construction of G′ and G′′ we
have that x and σ(x) belong to U . Then we get a contradiction, since the image of every vertex in
U is not in U . The embedding σ contradicts the assumption that G was non-embeddable, so we
deduce no counterexample to Theorem 2 exists. �

4 Concluding remarks

Let D be a digraph with a vertex set V (D) and an arc set A(D). For a vertex x of V (D) let us
denote by d+(x) the outer degree of x. By d−(x) we denote the inner degree of x. The degree of a
vertex x, denoted by d(x), is defined by d(x) = d+(x) + d−(x). If xy and yx belong to A(D), then
we say that x and y are joined by a pair of symmetric arcs.

Similarly as in case of graphs, we say that D is embeddable (in its complement) if there is a
permutation σ on V (D) such that if xy is an an arc of D, then σ(x)σ(y) is not an arc of D.

If a digraphD has only symmetric arcs, then by Theorem 1, D is embeddable if ||D|| ≤ 2n−4.
This leads to the following conjecture.

Conjecture 12 ([1]) Let D be a digraph of order n. If D has at most 2n − 4 arcs, then D is

embeddable.

Conjecture 12 is asymptotically true, see [7]. As a corollary of Theorem 2 we obtain that the conjec-
ture is true for digraphs that have sufficiently many symmetric arcs. Let d∗(x) = max{d+(x), d−(x)}
and let ∆∗ = max{d∗(x) : x ∈ V (D)}.

Corollary 13 Let D be a digraph of order n and size m with m ≤ 2n− 4. If the number of pairs

of symmetric arcs of D is at least ∆∗ + 14n2/3 + 16 then D is embeddable.

Proof. Let s denote the number of pairs of symmetric arcs in D. Construct a graph G(D) by
replacing every arc or every pair of symmetric arcs of D by an edge with the same endvertices.
Note that ||G(D)|| = m− s and ∆(G(D)) = ∆∗. By the assumption on n and on s we have

||G(D)||+∆(G(D)) = m− s+∆∗ ≤ 2n− 4− (14n2/3 + 16 +∆∗) + ∆∗ = 2n− 14n2/3 − 20

Thus, by Theorem 2, G is embeddable. Therefore, D is embeddable, too. �
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[7] A. Görlich, A. Żak, On packable digraphs, SIAM J. Discrete Math. 24 (2010) 552–557.

[8] N. Sauer, J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978)
295–302.

7



[9] S. Schuster, Fixed-point-free embeddings of graphs in their complements, Internat. J. Math.
Sci. 1 (1978) 335–338.
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