MATEMATYKA DYSKRETNA
 www.ii.uj.edu.pl/preMD/

Andrzej Żak

On embedding graphs with bounded sum of sizeand maximum degree

Preprint Nr MD 062

(otrzymany dnia 91 2013)

Kraków
2013

Redaktorami serii preprintów Matematyka Dyskretna są: Wit FORYŚ,
prowadzący seminarium Stowa, stowa, stowa...
w Instytucie Informatyki UJ
oraz
Mariusz WOŹNIAK, prowadzący seminarium Matematyka Dyskretna - Teoria Grafów na Wydziale Matematyki Stosowanej AGH.

On embedding graphs with bounded sum of size and maximum degree

Andrzej Żak*
AGH University of Science and Technology Faculty of Applied Mathematics
Al. Mickiewicza 30, 30-059 Kraków, Poland

January 9, 2013

Abstract

We say that a graph is embeddable if it is a subgraph of its complement. One of the classic result on graphs embedding says that each graph on n vertices with at most $n-2$ edges is embeddable. The bound on the number of edges cannot be increased because, for example, the star on n vertices is not embeddable. The reason of this fact is the existence of a vertex with very high degree. In this paper we prove that by forbidding such vertices, one can significantly increase the bound on the number of edges. Namely, we prove that if $\Delta(G)+|E(G)| \leq$ $2 n-f(n)$, where $f(n)=o(n)$, then G is embeddable. Our result is asymptotically best possible, since for the star S_{n} (which is not embeddable) we have $\Delta\left(S_{n}\right)+\left|E\left(S_{n}\right)\right|=2 n-2$. As a corollary we obtain that a digraphs embedding conjecture by Benhocine and Wojda 1985 is true for digraphs with sufficiently many symmetric arcs.

1 Introduction

We deal with finite, simple graphs without loops or multiple edges. The vertex and edge sets of a graph G are denoted by $V(G)$ and $E(G)$. The order of G is the number of vertices of G and is denoted by $|G|$. The size of G is the number of edges of G and is denoted by $\|G\|$. By $N_{G}(x)$ we denote the set of vertices adjacent to x in G. The degree (in G) of a vertex x is denoted by $d_{G}(x)$ and is equal to $\left|N_{G}(x)\right|$. The maximum degree of G is denoted by $\Delta(G)$ and is equal to the maximum among degrees of all vertices of G. For a vertex set X, the set $N_{G}(X)$ denotes the external neighbourhood of X in G, i.e.

$$
N_{G}(X)=\{y \in V(G) \backslash X: y \text { is adjacent to some } x \in X\} .
$$

We say that G is embeddable in its complement (G is embeddable, in short) if there is a permutation σ on $V(G)$ such that if $x y$ is an edge in G, then $\sigma(x) \sigma(y)$ is not an edge in G. Thus, G is embeddable if and only if G is a subgraph of its complement. If $\sigma(x) \neq x$ for every vertex $x \in V(G)$, then we say that G is fixed-point-free embeddable.

One of the classical results in the theory of graph embedding is the following theorem, proved independently in $[2,3,8]$.

Theorem $1([2,3,8])$ Every n-vertex graph having at most $n-2$ edges is embeddable.
This theorem cannot be improved by raising the size of G since for example a star on n vertices is not embeddable. In [4] and [5] all non-embeddable graphs with order n and size $n-1$ and n are presented, see also [10]. Among the non-embeddable ($n, n-1$) and (n, n) graphs there are 7 infinite

Figure 1: Infinite families of non-embeddable ($n, n-1$)-graphs and (n, n)-graphs

families, see Figure 1. It is clear from the examples that the strong restriction on the number of edges in Theorem 1 is a result of the existence of a vertex with very high degree. It seems to be very likely that by forbidding such vertices one can significantly improve the bound on the size of a graph in the statement of Theorem 1. We confirm this feeling by proving the following theorem.

Theorem 2 Let G be an n-vertex graph. If $\|G\|+\Delta(G) \leq 2 n-14 n^{2 / 3}-20$ then G is embeddable.
Note that the bound in Theorem 2 is nearly best possible. Indeed, it cannot be larger than $2 n-6$ which follows from Figure 1, see the second example. In fact, this example can be generalized in the following way.

Example Let V_{1}, \ldots, V_{t-1} be pairwise disjoint subsets with $\left|V_{i}\right|=t$ for $i=1, \ldots, t-2$ and $\left|V_{t-1}\right|=$ $n-t(t-2)$. Furthermore, let $x \in V_{t-1}$. Let G be a graph with $V(G)=V_{1} \cup \ldots \cup V_{t-1}$ such that each $V_{i}, i=1, \ldots, t-2$, induce a clique, V_{t-1} induce a star with center x and there are no other edges in G. Observe that G is not embeddable if n is sufficiently large. Indeed, suppose that σ is an embedding of G. If $\sigma(x) \in V_{i}$ for some $i \in\{1, \ldots, t-2\}$, then the remaining vertices of V_{i} must be images of vertices from different sets $V_{j}, j \neq t-1$. However, there are not enough sets V_{j}. Suppose that $\sigma(x) \in V_{t-1}$. If $\sigma(x) \neq x$, then x must be an image of a vertex from some set V_{i} with $i \in\{1, \ldots, t-2\}$. Thus, the remaining vertices of V_{i} have to be mapped on vertices from different sets V_{j} with $j \neq t-1$. However, there are not enough such sets V_{j}. Finally, if $\sigma(x)=x$, then the neighbors of x have to be mapped on the vertices from $V_{1} \cup \ldots \cup V_{t-2}$, which is impossible if n is sufficiently large.

Furthermore, $\Delta(G)=n-t(t-2)-1,\|G\|=\frac{t(t-1)}{2}(t-2)+n-t(t-2)-1$. Hence, $\Delta(G)+\|G\|=2 n-2+t(t-2) \frac{t-5}{2}$. Therefore, the coefficient 2 in Theorem 2 cannot be increased.

[^0]
2 Lemmas

We use the following result from [6].
Lemma 3 ([6]) Let G be a graph and k, l non-negative integers. If G has an independent set U of cardinality $k+l$ such that

1. U has k vertices with degree at most l, and its other vertices have degree at most k,
2. the neighborhoods of the vertices of U are pairwise disjoint,
3. there is an embedding σ^{\prime} of $G-U$,
then there exists an embedding σ of G.
We will need also the following known results.
Theorem $4([8])$ Let G_{1} and G_{2} be graphs of order n with maximum degrees $\Delta\left(G_{1}\right)$ and $\Delta\left(G_{2}\right)$, respectively. If $2 \Delta\left(G_{1}\right) \Delta\left(G_{2}\right)<n$, then the complete graph K_{n} contains edge-disjoint copies of G_{1} and G_{2}.

Theorem 5 ([9]) Every graph of order n and size at most $n-2$ is fixed-point-free embeddable.
For convenience, let $\alpha(n)=14 n^{2 / 3}+20$. In many places in the proofs we will use the following observation.

Proposition 6 Let G be a graph of order n such that $\|G\|+\Delta(G) \leq 2 n-\alpha(n)$. If G^{\prime} is a graph that arises from G by deleting m vertices and at least $2 m$ edges, then $\left\|G^{\prime}\right\|+\Delta\left(G^{\prime}\right) \leq 2 n^{\prime}-\alpha\left(n^{\prime}\right)$, where n^{\prime} is the order of G^{\prime}.

Proof. Note that $\alpha(n)$ is increasing with respect to n. Thus,

$$
\left\|G^{\prime}\right\|+\Delta\left(G^{\prime}\right) \leq 2 n-\alpha(n)-2 m=2(n-m)-\alpha(n) \leq 2 n^{\prime}-\alpha\left(n^{\prime}\right)
$$

Lemma 7 Let G be a graph of order n such that $\|G\|+\Delta(G) \leq 2 n-\alpha(n)$. If $n \leq 2744$, then G is embeddable.

Proof. Note that if $n \leq 2744$ then $2 n-14 n^{2 / 3}-20 \leq n-20$. Hence G is embeddable by Theorem 1.

Lemma 8 Let G be a graph of order n such that $\|G\|+\Delta(G) \leq 2 n-\alpha(n)$. If $\Delta(G) \leq 37$, then G is embeddable.

Proof. If $n \leq 2744$, then G is embeddable by Lemma 7. So we may assume that $n \geq 2745$. Note that if $\Delta(G) \leq 37$, then $2 \Delta^{2}(G)<2745 \leq n$. Hence G is embeddable by Theorem 5 .

A starry tree is a graph H such that (1) $V(H)$ can be partitioned into four sets V_{1}, V_{2}, V_{3} and $\{x\}$ that each induce a tree, (2) there is at least one edge incident to $x,(3)$ all edges not belonging to the trees induced by V_{1}, V_{2} and V_{3} are incident to x and (4) there are not edges between x and $V_{2} \cup V_{3}$. A vertex x we call a middle vertex of H. Note that a starry tree is not connected.

Lemma 9 Every starry tree admits an embedding such that its middle vertex is the image of one of its neighbors.

Proof. Let H be a starry tree. The proof is by induction on $\left|T_{1}\right|+\left|T_{2}\right|+\left|T_{3}\right|$. If $\left|T_{1}\right|+\left|T_{2}\right|+\left|T_{3}\right|=3$, then the existence of an embedding as required is obvious. Assume that $\left|T_{1}\right|+\left|T_{2}\right|+\left|T_{3}\right| \geq 4$. We distinguish two cases:
Case 1. There exists a leaf l in T_{1} such that the middle vertex x is adjacent to l.
Case 2. All the leaves of T_{1} are not adjacent to x.

Consider Case 1. Let $u \in V\left(T_{2}\right), v \in V\left(T_{3}\right)$ be vertices such that $T_{2}-u$ as well as $T_{3}-v$ either is disconnected or has at most one vertex. Thus, by Theorem 1 (or trivially in the latter situation), there is an embedding σ_{2} of $T_{2}-\{u\}$ and there is an embedding σ_{3} of $T_{3}-\{v\}$.

Suppose first that $\left|T_{1}\right|=1$ with $V\left(T_{1}\right)=\{l\}$. Then, the product $(l, x, v, u) \sigma_{2} \sigma_{3}$ is an embedding as required of H. Suppose next that $\left|T_{1}\right|=2$ with $V\left(T_{1}\right)=\left\{l, l^{\prime}\right\}$. Then, $(l, x, u)\left(l^{\prime}, v\right) \sigma_{2} \sigma_{3}$ is an embedding as required of H.

So we may assume that $\left|T_{1}\right| \geq 3$. Let l^{\prime} be the neighbor of l in T_{1}. Let $y \in V\left(T_{1}\right)$ such that $T_{1}-\left\{l, l^{\prime}, y\right\}$ either is disconnected or has at most one vertex. Thus, by Theorem 1 (or trivially in the latter situation), there is an embedding σ_{1} of $T_{1}-\left\{l, l^{\prime}, y\right\}$. Then the product $(l, x, u, y)\left(l^{\prime}, v\right) \sigma_{1} \sigma_{2} \sigma_{3}$ is an embedding as required of H.

Consider Case 2. Let L be the set of the leaves of $T_{1}, L=\left\{l_{1}, \ldots, l_{s}\right\}$. Note, that $\left|T_{1}\right| \geq 3$. Suppose first that all the leaves of T_{1} have a common neighbor y. Since H is a starry tree (so there is at least one edge incident to x) and the leaves of T_{1} are not joined with $x, x y$ is an edge of H. Let $H^{\prime}=H-L$. Clearly, H^{\prime} is a starry tree. Thus, by the induction hypothesis there is an embedding as required σ^{\prime} of H^{\prime}. Furthermore, since y is the only neighbor of x in H^{\prime}, we have $\sigma^{\prime}(y)=x$. In particular y is not a fixed point of σ^{\prime}. Thus the product $\left(l_{1}\right) \ldots\left(l_{s}\right) \sigma^{\prime}$ (i.e. l_{1}, \ldots, l_{s} are fixed points) is an embedding as required of H.

So we may assume that there are $l_{1}, l_{2} \in L$ with neighbors (in T_{1}) y_{1}, y_{2}, respectively, such that $y_{1} \neq y_{2}, y_{1} \neq l_{2}$ and $y_{2} \neq l_{1}$ (recall that $\left|T_{1}\right| \geq 3$ in this case). Let $H^{\prime \prime}=H-\left\{l_{1}, l_{2}\right\}$. Clearly, $H^{\prime \prime}$ is a starry tree. Hence, by the induction hypothesis, there is an embedding as required $\sigma^{\prime \prime}$ of $H^{\prime \prime}$. Then $\left(l_{1}, l_{2}\right) \sigma^{\prime \prime}$ is an embedding as required of H if $\sigma^{\prime \prime}\left(y_{1}\right)=y_{1}$ or $\sigma^{\prime \prime}\left(y_{2}\right)=y_{2}$. Otherwise, $\left(l_{1}\right)\left(l_{2}\right) \sigma^{\prime \prime}$ is an embedding as required of H.

Lemma 10 Let G be a graph with minimum order n such that G is a non-embeddable graph with $\|G\|+\Delta(G) \leq 2 n-\alpha(n)$. Then G has no isolated vertices.

Proof. Suppose for a contradiction, that y is an isolated vertex of G. By Lemma 8, there is $x \in G$ with $\operatorname{deg} x \geq 38$. Let $G^{\prime}=G-\{x, y\}$. By Proposition $6,\left\|G^{\prime}\right\|+\Delta\left(G^{\prime}\right) \leq 2\left|G^{\prime}\right|-\alpha\left(\left|G^{\prime}\right|\right)$. Thus, by the minimality assumption there is an embedding σ^{\prime} of G^{\prime}. Then $(x y) \sigma^{\prime}$ is an embedding of G, a contradiction.

Lemma 11 Let G be a graph with minimum order n such that G is a non-embeddable graph with $\|G\|+\Delta(G) \leq 2 n-\alpha(n)$. If two vertices of G of degree 1 have different neighbors then G has at most 20 vertices of degree 1 .

Proof. Let V_{1} denote the set of all vertices of G with degree 1. Suppose for a contradiction, that $\left|N\left(V_{1}\right)\right| \geq 2$ and $\left|V_{1}\right|>20$. By Lemma 8 we may assume that G contains a vertex x with $\operatorname{deg} x \geq 38$. Let $x_{1}, x_{2} \in V_{1}$ and $y_{1}, y_{2}, y_{1} \neq y_{2}$, be the neighbors of x_{1} and x_{2} respectively.

Note that y_{1} and y_{2} cover at most 7 edges. Indeed, otherwise $G^{\prime}:=G-\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ arises from G by deleting 4 vertices and at least 8 edges. Hence, $\left\|G^{\prime}\right\|+\Delta\left(G^{\prime}\right) \leq 2\left|G^{\prime}\right|-\alpha\left(\left|G^{\prime}\right|\right)$, by Proposition 6. Thus, by the minimality assumption there is an embedding σ^{\prime} of G^{\prime}. Then, $\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \sigma^{\prime}$ is an embedding of G. On the other hand, if $\operatorname{deg} y_{1}=1$, then $G^{\prime \prime}:=G-\left\{x, x_{1}, y_{1}\right\}$ also satisfies $\left\|G^{\prime \prime}\right\|+\Delta\left(G^{\prime \prime}\right) \leq 2\left|G^{\prime \prime}\right|-\alpha\left(\left|G^{\prime \prime}\right|\right)$ by Proposition 6. Hence, by the minimality assumption there is an embedding $\sigma^{\prime \prime}$ of $G^{\prime \prime}$. Then $\left(x, x_{1}, y_{1}\right) \sigma^{\prime \prime}$ is an embedding of G. The same argument holds if $\operatorname{deg} y_{2}=1$.

Therefore, we may assume that $2 \leq \operatorname{deg} y_{1} \leq 6$ and $2 \leq \operatorname{deg} y_{2} \leq 6$, and x is not a neighbor of any vertex from V_{1}. Moreover, $\operatorname{deg} y_{1}+\operatorname{deg} y_{2} \leq 8$ if $y_{1} y_{2}$ is an edge of G, and $\operatorname{deg} y_{1}+\operatorname{deg} y_{2} \leq 7$ otherwise. In particular, y_{2} has at most $7-\operatorname{deg} y_{1}$ neighbors in V_{1}. Analogously, every vertex other than y_{1} of G has at most $7-\operatorname{deg} y_{1}$ neighbors in V_{1}. Let $V_{1}^{\prime} \subset V_{1}$ be the set of all vertices of degree 1 which are at distance equal to 1 or 2 from y_{1}. Let $V_{1}^{\prime \prime}=V_{1} \backslash V_{1}^{\prime}$. Thus, $\left|V_{1}^{\prime}\right| \leq$ $\left(\operatorname{deg} y_{1}-1\right)\left(7-\operatorname{deg} y_{1}\right)+1$. Hence, $\left|V_{1}^{\prime \prime}\right| \geq\left|V_{1}\right|-\left(\operatorname{deg} y_{1}-1\right)\left(7-\operatorname{deg} y_{1}\right)-1$. Since every vertex other than y_{1} of G has at most $7-\operatorname{deg} y_{1}$ neighbors in V_{1}, we have

$$
\left|N\left(V_{1}^{\prime \prime}\right)\right| \geq \frac{\left|V_{1}\right|-\left(\operatorname{deg} y_{1}-1\right)\left(7-\operatorname{deg} y_{1}\right)-1}{7-\operatorname{deg} y_{1}}
$$

Therefore, if $\left|V_{1}\right| \geq\left(\operatorname{deg} y_{1}-1\right)\left(7-\operatorname{deg} y_{1}\right)+1+\left(\operatorname{deg} y_{1}-1\right)\left(7-\operatorname{deg} y_{1}\right)+1$ then $\left|N\left(V_{1}^{\prime \prime}\right)\right| \geq$ $\operatorname{deg} y_{1}$, so we can find an independent set $W \subset V_{1}$ of $\operatorname{deg} y_{1}$ vertices of degree 1 that have different neighbors and are at distance at least 3 from y_{1}. It is easy to check that the above statement is true if $\left|V_{1}\right| \geq 20$ since the largest number of vertices of degree 1 is needed when $\operatorname{deg} y_{1}=4$.

Consider now a graph $G^{\prime \prime \prime}:=G-\left(W \cup\left\{x, x_{1}, y_{1}\right\}\right)$. Note that in order to obtain $G^{\prime \prime \prime}$ we remove from $G, \operatorname{deg} y_{1}+3$ vertices and at least $\operatorname{deg} y_{1}+\left(\operatorname{deg} y_{1}+\operatorname{deg} x-1\right) \geq 2\left(\operatorname{deg} y_{1}+3\right)$ edges. Therefore, by Proposition $6, \| G^{\prime \prime \prime}| |+\Delta\left(G^{\prime \prime \prime}\right) \leq 2\left|G^{\prime \prime \prime}\right|-\alpha\left(\left|G^{\prime \prime \prime}\right|\right)$. Hence, by the minimality assumption, there is an embedding $\sigma^{\prime \prime \prime}$ of $G^{\prime \prime \prime}$. Furthermore, $\left(x, x_{1}\right) \sigma^{\prime \prime \prime}$ is an embedding of $G-\left(W \cup\left\{y_{1}\right\}\right)$. Then, by Lemma 3, there is an embedding of G, a contradiction.

3 Proof of Theorem 2

Proof. Assume that G is a counterexample to Theorem 2 with minimum order n. By Lemma 7, $n \geq 2745$ and, by Lemma $8, \Delta(G) \geq 38$. Moreover, by Lemma $10, G$ has no isolated vertices. Let $k=\left\lfloor n^{1 / 3}\right\rfloor$. Let S denote a most numerous independent set consisted of vertices of degrees $2, \ldots, k$ which have pairwise disjoint sets of neighbors. By Proposition $6,\|G-S\|+\Delta(G-S) \leq$ $2|G-S|+\alpha(|G-S|)$. Thus, if $S \neq \emptyset$, then, by the minimality assumption, $G-S$ is embeddable. Hence, by Lemma 3 (with $l=k$),

$$
\begin{equation*}
|S|<2 k \tag{1}
\end{equation*}
$$

Clearly, (1) holds also if $S=\emptyset$. Thus,

$$
\begin{equation*}
|N(S)|<2 k^{2} \leq 2 n^{2 / 3} \tag{2}
\end{equation*}
$$

Let $V_{j}:=\{v \in V(G) \backslash N(S): d(v)=j\}$. By the definition of S, every vertex from $V_{2} \cup \ldots \cup V_{k}$ has a neighbor in $N(S)$. Furthermore, the number n_{k} of vertices of degree greater than k does not exceed $4 n^{2 / 3}$ because $2\|G\|=\sum_{v \in V(G)} d_{G}(v)<4 n$. Therefore

$$
\begin{equation*}
|N(N(S))| \geq\left|V_{2} \cup \ldots \cup V_{k}\right| \geq n-\left|V_{1}\right|-n_{k}-|N(S)| \geq n-\left|V_{1}\right|-4 n^{2 / 3}-|N(S)| \tag{3}
\end{equation*}
$$

Now, let $U=N(S) \cup\{x\}$ if x is a common neighbor of all vertices of degree 1. Otherwise let $U=N(S)$. Hence $U \neq \emptyset$. Indeed, in the former case $x \in U$. In the latter we also have that $U \neq \emptyset$ for otherwise

$$
\begin{equation*}
4 n-28 n^{2 / 3}-40 \geq 2| | G \|=\sum_{u \in V(G)} d(u) \geq 20+(n-20) n^{1 / 3} \tag{4}
\end{equation*}
$$

because in this case there are at most 20 vertices of degree 1, see Lemma 11. However, for $n \geq 2745$ inequality (4) is false. Furthermore, by (3), we have

$$
\begin{equation*}
|N(U)| \geq n-20-4 n^{2 / 3}-|N(S)| \geq n-6 n^{2 / 3}-20 \tag{5}
\end{equation*}
$$

Thus, vertices from U cover at least $n-6 n^{2 / 3}-20$ edges. Consider now the graph $G-U$. Let T_{1}, \ldots, T_{p} denote connected components of $G-U$ which are trees such that each vertex of T_{i} is adjacent to at most one vertex in $N(S)$. We call these components minimal components of $G-U$. Let $R:=G-U-V\left(T_{1}\right)-\ldots-V\left(T_{p}\right)$. Let r denote the sum of the size of R and the number of all vertices in R which are joined (in G) with U by at least two edges. Since R does not contain minimal components, every component of R which is a tree contains a vertex joined with U by at least two edges. On the other hand, every component of R which is not a tree has at least as many edges as vertices. Hence,

$$
\begin{equation*}
r \geq|R| \tag{6}
\end{equation*}
$$

Moreover, r counts all edges in R and some edges between R and $N(S)$ which are not counted in inequality (5), because this inequality counts only the number of vertices in $N(U)$ and ignores the number of connections.

Note that there are exactly $n-|U|-|R|-p$ edges in $\bigcup_{i=1}^{p} T_{i}$. Below we show that p is greater than or equal to $3|U|+\Delta-|R|+r$. By the assumption and by inequality (5), we have

$$
\begin{aligned}
2 n-14 n^{2 / 3}-20-\Delta & \geq \| G| | \geq n-20-6 n^{2 / 3}+(n-|U|-p-|R|)+r \\
& \geq 2 n-8 n^{2 / 3}-20-p-|R|+r
\end{aligned}
$$

because $|U| \leq|N(S)|+1 \leq 2 n^{2 / 3}$. Thus

$$
\begin{equation*}
p \geq 6 n^{2 / 3}-|R|+r+\Delta \geq 3|U|+\Delta-|R|+r . \tag{7}
\end{equation*}
$$

We will now partition $V(G)$ into two sets each of which induce an embeddable subgraph. First we will try to assign to each vertex u of U a minimal component which is connected with u. Let l be the maximum number of minimal components assigned to vertices of U in this way. If $l<|U|$, then we assign an arbitrary minimal component to every remaining vertex of U. Let \mathcal{M}^{\prime} be the set of minimal components not yet assigned. Now, we assign $2|U|$ different minimal components to vertices from U in such a way that every vertex $u \in U$ has two minimal components in \mathcal{M}^{\prime} disjoint with u. This is possible because $\left|\mathcal{M}^{\prime}\right| \geq \Delta+2|U|$. So, we have constructed l starry trees with middle vertices in U. Note, that l is the maximum number of starry trees with middle vertices in U.

Without loss of generality we may assume that we have assigned $T_{1}, \ldots, T_{3|U|}$. Let $G^{\prime}:=$ $G\left[U \cup V\left(T_{1}\right) \cup \ldots \cup V\left(T_{3|U|}\right)\right]$ and $G^{\prime \prime}:=G-V\left(G^{\prime}\right)$. Below we will show that there exists an embedding of G^{\prime} such that every vertex from U is the image of its neighbor outside of U.

Suppose first that $l=|U|$. Then we pack every starry tree in such a way that the middle vertex is the image of one of its neighbors in the same starry tree (the required embedding exists by Lemma 9). Let σ_{i} be the required embedding of H_{i}. We claim that the product $\sigma=\sigma_{1} \ldots . \sigma_{|U|}$ is an embedding of G^{\prime} as well. Since σ_{i} is an embedding of H_{i}, only edges between different starry trees may spoil the embedding of G^{\prime}. Furthermore, every middle vertex is mapped on a non-middle vertex. Since there are no edges between T_{i} and T_{j} for $i \neq j$, the edges between middle vertices do not spoil the embedding. It remains to check the edges of the form $x y$ where x is the middle vertex of some starry tree and y is a non-middle vertex of another starry tree. However, since the middle vertex of each starry tree is the image of one of its neighbors in the same starry tree and this neighbor has no other neighbors outside its minimal component, these edges also do not spoil the embedding.

Suppose now, that $l<|U|$. Again, we pack every starry tree in such a way that the middle vertex is the image of one of its neighbors. Moreover, since L is maximal, each remaining vertex of U has no neighbors in each of the remaining minimal components (otherwise, we would have an extra starry tree). Hence, by Theorem 5, each of the remaining vertices from U together with three non-trivial minimal components (not involved in any starry tree) can be packed without fixed points. We claim that the product of these embeddings is a proper embedding of G^{\prime}. Suppose for a contradiction that the image of an edge e in G^{\prime} coincides with some other edge e^{\prime} in G^{\prime}. Using the previous argument, e^{\prime} must join a vertex $z \in U$ which is not in any starry tree from L with a non-middle vertex of some starry tree H. Moreover, e must join the middle vertex of H with some minimal component which is not in any starry tree from L. However, now we can exchange the two minimal components that contain one of the endvertices of the edges e and e^{\prime}. This way we obtain more than l starry trees and we get a contradiction. Hence G^{\prime} is embeddable.

Recall that $r \geq\|R\|$. Furthermore, by (5) we have

Thus, by Theorem $1, G^{\prime \prime}$ is embeddable.
Let $\sigma^{\prime}, \sigma^{\prime \prime}$ denote embeddings of G^{\prime} and $G^{\prime \prime}$, respectively. Then $\sigma=\sigma^{\prime} \sigma^{\prime \prime}$ is an embedding of G. Suppose for a contradiction that the image of an edge $x y$ in G coincides with some other
edge $\sigma(x) \sigma(y)$ in G. Then $x, \sigma(x) \in V\left(G^{\prime}\right)$ and $y, \sigma(y) \in V\left(G^{\prime \prime}\right)$. By construction of G^{\prime} and $G^{\prime \prime}$ we have that x and $\sigma(x)$ belong to U. Then we get a contradiction, since the image of every vertex in U is not in U. The embedding σ contradicts the assumption that G was non-embeddable, so we deduce no counterexample to Theorem 2 exists.

4 Concluding remarks

Let D be a digraph with a vertex set $V(D)$ and an arc set $A(D)$. For a vertex x of $V(D)$ let us denote by $d^{+}(x)$ the outer degree of x. By $d^{-}(x)$ we denote the inner degree of x. The degree of a vertex x, denoted by $d(x)$, is defined by $d(x)=d^{+}(x)+d^{-}(x)$. If $x y$ and $y x$ belong to $A(D)$, then we say that x and y are joined by a pair of symmetric arcs.

Similarly as in case of graphs, we say that D is embeddable (in its complement) if there is a permutation σ on $V(D)$ such that if $x y$ is an an arc of D, then $\sigma(x) \sigma(y)$ is not an arc of D.

If a digraph D has only symmetric arcs, then by Theorem $1, D$ is embeddable if $\|D\| \leq 2 n-4$. This leads to the following conjecture.

Conjecture 12 ([1]) Let D be a digraph of order n. If D has at most $2 n-4$ arcs, then D is embeddable.

Conjecture 12 is asymptotically true, see [7]. As a corollary of Theorem 2 we obtain that the conjecture is true for digraphs that have sufficiently many symmetric arcs. Let $d^{*}(x)=\max \left\{d^{+}(x), d^{-}(x)\right\}$ and let $\Delta^{*}=\max \left\{d^{*}(x): x \in V(D)\right\}$.

Corollary 13 Let D be a digraph of order n and size m with $m \leq 2 n-4$. If the number of pairs of symmetric arcs of D is at least $\Delta^{*}+14 n^{2 / 3}+16$ then D is embeddable.

Proof. Let s denote the number of pairs of symmetric arcs in D. Construct a graph $G(D)$ by replacing every arc or every pair of symmetric arcs of D by an edge with the same endvertices. Note that $\|G(D)\|=m-s$ and $\Delta(G(D))=\Delta^{*}$. By the assumption on n and on s we have

$$
\|G(D)\|+\Delta(G(D))=m-s+\Delta^{*} \leq 2 n-4-\left(14 n^{2 / 3}+16+\Delta^{*}\right)+\Delta^{*}=2 n-14 n^{2 / 3}-20
$$

Thus, by Theorem 2, G is embeddable. Therefore, D is embeddable, too.

References

[1] A. Benhocine, A. P. Wojda, On-self complementation, J. Graph Theory 8 (1985) 335-341.
[2] B. Bollobás, S.E. Eldridge, Packing of graphs and applications to computational complexity, J. Combin. Theory Ser. B 25 (1978) 105-124.
[3] D. Burns and S. Schuster, Every $(p, p-2)$ graph is contained in its complement, J. Graph Theory 1 (1977) 277-279.
[4] D. Burns and S. Schuster, Embedding $(p, p-1)$ graphs in their complements, Israel J. of Math., 30 (1978) 313-320.
[5] R. J. Faudree, C. C. Rousseau, R. H. Schelp, S. Schuster, Embedding graphs in their complements, Czechoslovak Math. J. 31 (106) (1981) 53-62.
[6] A. Görlich, A. Żak, A note on packing graphs without cycles of length up to five, Electronic J. Combin. 16 (2009) \#N30.
[7] A. Görlich, A. Żak, On packable digraphs, SIAM J. Discrete Math. 24 (2010) 552-557.
[8] N. Sauer, J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978) 295-302.
[9] S. Schuster, Fixed-point-free embeddings of graphs in their complements, Internat. J. Math. Sci. 1 (1978) 335-338.
[10] M. Woźniak, Packing of graphs, Dissertationes Math. 362 (1997) 1-78.

[^0]: *The author was partially supported by the Polish Ministry of Science and Higher Education.

