MATEMATYKA DYSKRETNA www.ii.uj.edu.pl/preMD/

Andrzej ŻAK

Cheapest $\left(K_{q} ; k\right)$-stable graphs

Preprint Nr MD 058
(otrzymany dnia 19.04.2012)

Kraków 2012

Redaktorami serii preprintów Matematyka Dyskretna są:
Wit FORYŚ (Instytut Informatyki UJ)
oraz
Mariusz WOŹNIAK (Katedra Matematyki Dyskretnej AGH)

Cheapest ($K_{q} ; k$)-stable graphs

Andrzej Żak*
AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

April 19, 2012

Abstract

A graph G is called $(H ; k)$-stable if G contains a subgraph isomorphic to H ever after removing any k elements each of which is either a vertex or an edge of G. Given a cost α of every vertex and a cost β of every edge of G we define the total cost $c(G)$ of G to be $c(G)=\alpha|G|+\beta\|G\|$. By $\operatorname{stab}_{(\alpha, \beta)}(H ; k)$ we denote the minimum cost among the costs of all $(H ; k)$ stable graphs. In the paper, for all $\alpha, \beta \geq 0$, we present the exact value of $\operatorname{stab}_{(\alpha, \beta)}\left(K_{q} ; k\right)$ for infinitely many k.

1 Introduction

By a word graph we mean a simple graph in which multiple edges (but not loops) are allowed. Given a graph $G, V(G)$ denotes the vertex set of G and $E(G)$ denotes the edge set of G. Furthermore, $|G|:=|V(G)|$ is the order of G and $\| G| |:=|E(G)|$ is the size of G.

Let H be any graph and k a non-negative integer. A graph G is called $(H ; k)$-stable if $G-S$ contains a subgraph isomorphic to H for every set $S \subset V \cup E$ with $|S| \leq k$. Given the cost $\alpha \geq 0$ of every vertex, and the cost $\beta \geq 0$ of every edge, the total cost $c(G)$ of G is defined by $c(G)=\alpha|G|+\beta\|G\|$. Then $\operatorname{stab}_{(\alpha, \beta)}(H ; k)=\min \{c(G): G$ is $(H ; k)$ stable $\}$ denotes the minimum cost among the costs of all $(H ; k)$-vertex stable graphs.

Note that if $S \subset V$ and $\alpha=0, \beta=1$ then the above problem reduces to the problem of finding minimum $(H ; k)$-vertex stable graphs, with the minimum cost ($=$ minimum size) denoted by $\operatorname{stab}(H ; k)$. This problem has been investigated in several papers including [1, 2, 3, 6]. In particular, the following result was obtained

Theorem 1 ([6]) If $q \geq 2$ and $k \geq(q-3)(q-2)-1$, then

$$
\operatorname{stab}\left(K_{q} ; k\right)=(2 q-3)(k+1)
$$

Moreover, if G is a $\left(K_{q} ; k\right)$-stable with $\|G\|=(2 q-3)(k+1)$ then G is a disjoint union of cliques $K_{2 q-3}$ and $K_{2 q-2}$.
In this paper, for all $\alpha, \beta \geq 0$ and $q \geq 2$, we present the exact value of $\operatorname{stab}_{(\alpha, \beta)}\left(K_{q} ; k\right)$ for infinitely many k. However, we prove only a special case $\alpha=\beta=1$. For the proof of the whole result, we refer the reader to the full version of this article [7].

It is worth mentioning that a 'clear' edge version (i.e. with $S \subset E$ and $\alpha=0, \beta=1$) of this problem has also been considered, see $[4,5]$.

[^0]
2 Main result

We start with the following lemma.
Lemma 2 If G is $(H ; k)$-stable with minimum cost, then

$$
\begin{equation*}
|G|-\delta_{H} \sum_{v \in V(G)} \frac{1}{d_{G}(v)+1} \geq k+1 \tag{1}
\end{equation*}
$$

Moreover, if G is not a union of cliques then the inequality (1) is strong.
This lemma is completely analogous to Theorem 2 in [6]. For completness we repeat the proof from [7].
Proof of Lemma 2. Let σ be an ordering of the vertices of G. For $v \in V(G) \operatorname{let}^{\operatorname{deg}}{ }_{\sigma}^{-}(v)$ denote the number of neighbors of v that are on the left from v in ordering σ. Let S_{σ} denote the set of all vertices v with $\operatorname{deg}_{\sigma}^{-}(x) \leq \delta_{H}-1$. Note that by removing from G all vertices from $V(G) \backslash S_{\sigma}$ we spoil all copies of H. Indeed, we can consecutively (from the right to the left) eliminate all vertices from S_{σ} because at each time the analized vertex has degree $\leq \delta_{H}-1$ (and therefore is useless for $H)$. Thus, since G is $(H ; k)$-stable, $|G|-\left|S_{\sigma}\right| \geq k+1$ for each ordering σ.

Therefore, it suffices to find an ordering σ with $\left|S_{\sigma}\right| \geq \delta_{H} \sum_{v \in V(G)} \frac{1}{d_{G}(v)+1}$. We assume that $\delta_{H} \geq 2$, because for $\delta_{H}=1$ each set S_{σ} is an independent set and the undermentioned facts are well known. Given a random ordering σ, the probability that a vertex v has at most i neighbours on its left side in the ordering σ is equal

$$
\operatorname{Pr}\left(\operatorname{deg}_{\sigma}^{-}(v) \leq i\right)=\frac{\binom{n}{d_{G}(v)+1}(i+1)\left(d_{G}(v)\right)!\left(n-d_{G}(v)-1\right)!}{n!}=\frac{i+1}{d_{G}(v)+1}
$$

Thus,

$$
\operatorname{Pr}\left(v \in S_{\sigma}\right)=\frac{\delta_{H}}{d_{G}(v)+1}
$$

Hence,

$$
E\left(\left|S_{\sigma}\right|\right)=\sum_{v \in V(G)} \frac{\delta_{H}}{d_{G}(v)+1}
$$

Thus, there exists an ordering σ with the required number of vertices in S_{σ}. Furthermore, the equality in (1) may hold only if $\left|S_{\sigma}\right|$ is the same for every ordering σ (if there is a σ with $\left|S_{\sigma}\right|<\delta_{H} \sum_{v \in V(G)} \frac{1}{d_{G}(v)+1}$, then there is also a σ^{\prime} with $\left|S_{\sigma^{\prime}}\right|>\delta_{H} \sum_{v \in V(G)} \frac{1}{d_{G}(v)+1}$ because the expectation is exactly that number). Now we will prove that if G is minimum $(H ; k)$-stable, then this is possible only for the disjoint union of cliques.
Let C be any component of G and let $v \in V(C)$. Note that since G is a $(H ; k)$-stable with minimum cost, every vertex (as well as every edge) of G is contained in some copy of H. Thus, the minimum degree of G is at least δ_{H}. Let $\delta=\delta_{H}$. Let v be an arbitrary vertex of G. Consider the following ordering σ of vertices of C :

$$
v_{1}, v_{2}, \ldots, v_{\delta}, v_{\delta+1}, v_{\delta+2}, \ldots, v_{|C|}
$$

where $v_{\delta+1}=v$ and $v_{1}, v_{2}, \ldots, v_{\delta}$ are any neighbours of v. Next consider an ordering σ^{\prime}

$$
v_{\delta+1}, v_{1}, v_{2}, \ldots, v_{\delta}, v_{\delta+2}, \ldots, v_{|C|}
$$

Note that since $\left|S_{\sigma}\right|=\left|S_{\sigma^{\prime}}\right|$ and $v_{\delta+1} \in S_{\sigma^{\prime}}, v_{\delta} \notin S_{\sigma^{\prime}}$. Thus, $\operatorname{deg}_{\sigma^{\prime}}^{-}\left(v_{\delta}\right)=\delta$. Analogously we obtain that $\operatorname{deg}_{\sigma^{\prime \prime}}^{-}\left(v_{\delta-1}\right)=\delta$ in an ordering $\sigma^{\prime \prime}: v_{\delta}, v_{\delta+1}, v_{1}, v_{2}, \ldots, v_{\delta-1}, v_{\delta+2}, \ldots, v_{|C|}$, and so on. Therefore, vertices $v_{1}, v_{2}, \ldots, v_{\delta}, v_{\delta+1}$ induce a clique. Since v and its neighbours have been chosen arbitrarily, $\{v\} \cup N_{G}(v)$ induce a clique for each $v \in V(C)$. This implies that C is a clique.

Theorem 3 If $q \geq 2$ and $k \geq(q-1)(q-2)-1$, then

$$
\begin{equation*}
\operatorname{stab}_{(1,1)}\left(K_{q} ; k\right)=(2 q-1)(k+1) \tag{2}
\end{equation*}
$$

Moreover, if G is a $\left(K_{q} ; k\right)$-stable with $c(G)=(2 q-1)(k+1)$ then G is a disjoint union of cliques $K_{2 q-2}$ and $K_{2 q-1}$.

Proof. Let G be a $\left(K_{q} ; k\right)$-stable graph with minimum possible cost. By Lemma 2 we have that

$$
\begin{aligned}
&|G| \geq(q-1) \sum_{v \in V(G)} \frac{1}{d_{G}(v)+1}+k+1 \geq|G| \frac{q-1}{d_{G}+1}+k+1, \text { and so } \\
&|G| \geq(k+1) \frac{d_{G}+1}{d_{G}-q+2}
\end{aligned}
$$

where $d_{G}=\frac{2| | G| |}{|G|}$ is the average degree of G. Thus,

$$
c(G)=|G|+\|G\|=|G|+\frac{d_{G}}{2}|G| \geq\left(1+\frac{d_{G}}{2}\right)(k+1) \frac{d_{G}+1}{d_{G}-q+2}
$$

By examining the derivative of the function $f(x)=\left(1+\frac{x}{2}\right)(k+1) \frac{x+1}{x-q+2}$ we obtain that f is decreasing for $x \leq x_{0}$ and increasing for $x \geq x_{0}$ where $x_{0}=q-2+\sqrt{(q-1) q}$. Note that

$$
\begin{equation*}
2 q-3<x_{0}<2 q-2 \tag{3}
\end{equation*}
$$

Therefore, the lower bound (2) can be achieved only if $d_{G} \in[2 q-3,2 q-2]$. Indeed, otherwise $c(G)>(2 q-1)(k+1)$, since $f(2 q-3)=f(2 q-2)=(k+1)(2 q-1)$. Then the sum $\sum_{v \in V(G)} \frac{1}{d_{G}(v)+1}$ is minimal if degrees of vertices of G differ as small as possible from d_{G}. Thus, we may assume that $d_{G}(v) \in\{2 q-3,2 q-2\}$ for every $v \in V(G)$. Let m denote the number of vertices of G with degree equal to $2 q-3$. Hence,

$$
\begin{equation*}
\sum_{v \in V(G)} \frac{1}{d_{G}(v)+1} \geq m \frac{1}{2 q-2}+(|G|-m) \frac{1}{2 q-1} \tag{4}
\end{equation*}
$$

with equality if and only if $d_{G}(v) \in\{2 q-3,2 q-2\}$ for every $v \in V(G)$. Therefore, by Lemma 2 we have

$$
\begin{align*}
& |G|-m \frac{q-1}{2 q-2}-(|G|-m) \frac{q-1}{2 q-1} \geq k+1, \text { and so } \tag{5}\\
& |G| \geq(k+1) \frac{2 q-1}{q}+\frac{m}{2 q}
\end{align*}
$$

and if equality holds, then G is a disjoint union of cliques.
Thus,

$$
\begin{align*}
c(G) & =|G|+||G||=|G|+\frac{1}{2}(m(2 q-3)+(|G|-m)(2 q-2)) \\
& =|G| q-m / 2 \geq(2 q-1)(k+1)+m / 2-m / 2 \tag{6}\\
& =(2 q-1)(k+1)
\end{align*}
$$

by formula (5). Moreover, if equality holds, then G is the disjoint union of cliques $K_{2 q-2}$ and $K_{2 q-1}$.

Now we will show that the equality in formula (6) is indeed attained for disjoint union of cliques $K_{2 q-2}$ and $K_{2 q-1}$. Note that $a K_{2 q-1}+b K_{2 q-2}$ is $\left(K_{q} ; a q+b(q-1)-1\right)$-stable. Hence, for $k=a q+b(q-1)-1$,

$$
\begin{aligned}
c\left(a K_{2 q-1}+b K_{2 q-2}\right) & =a(2 q-1)+a \frac{(2 q-1)(2 q-2)}{2}+b(2 q-2)+b \frac{(2 q-2)(2 q-3)}{2} \\
& =(2 q-1)(a q+b(q-1))=(2 q-1)(k+1)
\end{aligned}
$$

as required.
On the other hand $(q-1)(q-2)-1$ is the Frobenious number for $\{q, q-1\}$, namely the largest integer that canot be presented in the form $a q+b(q-1)$. Thus, if $k \geq(q-1)(q-2)-1$, then $G=a K_{2 q-1}+b K_{2 q-2}$ is $\left(K_{q} ; k\right)$-stable with minimum cost.

For arbitrary α, β we have
Theorem 4 ([7]) Let $\alpha \geq 0, \beta>0$ be real numbers and $k \geq 0, q \geq 2$ be integers. Let $r=$ $\left\lfloor\sqrt{(q-1)\left(q-2+\frac{2 \alpha}{\beta}\right)}\right\rfloor-q$.

1. If $\alpha(q-1)>\beta\left(2 q+q r+\left(r^{2}+r-2\right) / 2\right)$, then

$$
\operatorname{stab}_{(\alpha, \beta)}\left(K_{q} ; k\right) \geq(k+1) \frac{2 q+r}{q+1+r}\left(\alpha+\beta\left(q+\frac{r-1}{2}\right)\right)
$$

with equality if and only if $k=a(q+1+r)-1$ for some positive integer a. Moreover, if G is $(H ; k)$-stable with minimum cost then G is a disjoint union of cliques $K_{2 q+r}$.
2. If $\alpha(q-1)=\beta\left(2 q+q r+\left(r^{2}+r-2\right) / 2\right)$, then

$$
\operatorname{stab}_{(\alpha, \beta)}\left(K_{q} ; k\right) \geq(k+1) \frac{2 q+r}{q+1+r}\left(\alpha+\beta\left(q+\frac{r-1}{2}\right)\right)
$$

with equality if and only if $k=a(q+1+r)+b(q+r)-1$ for some positive integers a, b. Moreover, if G is $(H ; k)$-stable with minimum cost then G is a disjoint union of cliques $K_{2 q+r}$ and $K_{2 q-1+r}$.
3. If $\alpha(q-1)<\beta\left(2 q+q r+\left(r^{2}+r-2\right) / 2\right)$, then

$$
\operatorname{stab}_{(\alpha, \beta)}\left(K_{q} ; k\right) \geq(k+1) \frac{2 q-1+r}{q+r}\left(\alpha+\beta\left(q+\frac{r-2}{2}\right)\right)
$$

with equality if and only if $k=a(q+r)-1$ for some positive integer a. Moreover, if G is $(H ; k)$-stable with minimum cost then G is a disjoint union of cliques $K_{2 q-1+r}$.

References

[1] S. Cichacz, A. Görlich, M. Zwonek and A. Żak, On $\left(C_{n} ; k\right)$ stable graphs, Electron. J. Combin. 18(1) (2011) \#P205.
[2] A. Dudek, A. Szymański, M. Zwonek, (H, k) stable graphs with minimum size, Discuss. Math. Graph Theory 28(1) (2008) 137-149.
[3] J-L. Fouquet, H. Thuillier, J-M. Vanherpe and A.P. Wojda, On ($K q ; k$) vertex stable graphs with minimum size, Discrete Math. (2011) article in press doi:10.1016/j.disc.2011.04.017.
[4] P. Frankl and G.Y. Katona, Extremal k-edge Hamiltonian hypergraphs, Discrete Math. 308 (2008) 1415-1424.
[5] I. Horváth, G.Y. Katona, Extremal P_{4}-stable graphs, Discrete Appl. Math. (2011) (in press), Corrected Proof. doi:10.1016/j.dam.2010.11.016.
[6] A. Żak, On $\left(K_{q} ; k\right)$ stable graphs, submitted.
[7] A. Żak, Cheapest $(H ; k)$-stable graphs, submitted.

[^0]: *The author was partially supported by the Polish Ministry of Science and Higher Education.

