MATEMATYKA DYSKRETNA www.ii.uj.edu.pl/preMD/

Sylwia CICHACZ

Distance magic
 (r, t)-hypercycles

Preprint Nr MD 057

(otrzymany dnia 1.01.2012)

Kraków
2012

Redaktorami serii preprintów Matematyka Dyskretna są:
Wit FORYŚ (Instytut Informatyki UJ)
oraz
Mariusz WOŹNIAK (Katedra Matematyki Dyskretnej AGH)

Distance magic (r, t)-hypercycles

Sylwia Cichacz*
Faculty of Applied Mathematics
AGH University of Science and Technology

Al. Mickiewicza 30, 30-059 Kraków, Poland
January 1, 2012

Abstract

Let $H=(V, E)$ be a hypergraph of order n. A distance magic labeling of H is a bijection $l: V \rightarrow\{1,2, \ldots, n\}$ for that there exists a positive integer k such that $\sum_{x \in N(v)} l(x)=k$ for all $v \in V$, where $N(v)$ is the neighborhood of v. In this paper we deal with (r, t)-hypercycles. It was proved that (1,2)-hipercycle of order n is a distance magic graph if and only if $n=4([7])$. In this paper we solve the similar problem for $t=3,4$.

Keywords: Distance magic labeling, hypercycles.
2000 Mathematics Subject Classification: 05C78, 05C15

1 Introduction

A hypergraph H is a pair $H=(V, E)$ where V is a set of vertices and E is a set of non-empty subsets of V called hyperedges. The order of a hypergraph H is denoted by $|H|$ and the size is denoted by $\|H\|$. If all edges have the same cardinality t, the hypergraph is said to be t-uniform. Hence a graph is 2-uniform hypergraph. Two vertices in a hypergraph are adjacent if there is an edge containing both of them. The neighborhood $N_{H}(x)$ of a vertex

[^0]$x \in V(H)$ is the set of vertices adjacent to x.
The (r, t)-hypercycle, $1 \leq r \leq t-1$, is defined as t-uniform hypergraphs whose vertices can be ordered cyclically in such a way that the edges are segments of that cyclic order and every two consecutive edges share exactly r vertices [6].

Distance magic labeling (also called sigma labeling) of a hypergraph $H=$ (V, E) of order n is a bijection $l: V(H) \rightarrow\{1,2, \ldots, n\}$ with the property that there is a positive integer k (called magic constance) such that $\sum_{y \in N_{H}(x)} l(y)=k$ for every $x \in V(H)$. If a hypergraph H admits a distance magic labeling, then we say that H is distance magic hypergraph.

The idea of distance magic labelling of a graph has been motivated by the construction of magic squares. Finding an r-regular distance magic labeling turns out equivalent to finding equalized incomplete tournament $\operatorname{EIT}(n, r)$ [2]. A fair incomplete tournament of n teams with k rounds is a tournament in which every team plays exactly k other teams and the total strength of the opponents that each team misses during the tournament is the same for all teams. For a survey, we refer the reader to [1].

The following observations were independently proved:
Observation 1 ([5], [7], [8], [9]) Let G be a r-regular distance magic graph on n vertices. Then $k=\frac{r(n+1)}{2}$.
Observation 2 ([5], [7], [8], [9]) No r-regular graph with r-odd can be a distance magic graph.

It was proved in [7]:
Theorem 3 ([7]) The cycle C_{n} of length n is a distance magic graph if and only if $n=4$.

In this paper we consider the corresponding problem for (r, t)-hypercycles. We show that if $r \leq \frac{t}{2}$ then the (r, t)-hypercycle is not distance magic. We will give also some results for $(t-1, t)$-hypercycles. In particular we complete solve the case for $t \in\{3,4\}$.

The paper is organized as follows. In the next section we show correspondence between distance magic labeling (r, t)-hypercycles of order n and distance magic labeling of some graphs. Some preliminary lemmas will be proved in the third section. In forth section we characterize whenever C_{n}^{p} for $p=2,3$ is distance magic graph. The main result and open problems are stayed in the last section.

2 Equivalent problem

For a hypergraph H of order n we define a graph G_{H} as follows $V\left(G_{H}\right)=$ $V(H)$ and $x_{i} x_{j} \in E\left(G_{H}\right)$ in and only if there exists an edge $e \in E(H)$ such that $x_{i}, x_{j} \in e$. Let $l^{\prime}: V(H) \rightarrow\{1,2, \ldots, n\}$ be any bijection. Define $l: V\left(G_{H}\right) \rightarrow\{1,2, \ldots, n\}$ such that $l\left(x_{i}\right)=l^{\prime}\left(x_{i}\right)$. Notice that $\sum_{y \in N_{H}(x)} l^{\prime}(y)=$ $\sum_{v \in N_{G_{H}}(x)} l(v)$. Hence H is distance magic hypergraph if and only if G_{H} is distance magic graph.

The p th power of a graph G is a graph G^{p} with the same set of vertices as G and an edge between two vertices if and only if there is a path of length at most p between them. In this paper we will consider the p th power of a cycle C_{n}. Notice that C_{n}^{p} is $2 p$-regular graph.

Notice that if H is $(t-1, t)$-hypercycle then $G_{H} \cong C_{n}^{t-1}$.

3 Lemmas

In this section we present several useful lemmas.
Let $w(x)=\sum_{y \in N_{H}(x)} l(y)$ for every $x \in V(H)$. We start with the observations:
Observation 4 Let C_{n}^{p} be distance magic graph with magic constance k, then for any $\gamma \in \mathbb{N}$:

$$
\begin{aligned}
& \quad l\left(x_{0}\right)+l\left(x_{p+1}\right)=l\left(x_{p}\right)+l\left(x_{2 p+1}\right)=\cdots=l\left(x_{\gamma p}\right)+l\left(x_{(\gamma+1) p+1}\right)=k_{1}, \\
& l\left(x_{1}\right)+l\left(x_{p+2}\right)=l\left(x_{p+1}\right)+l\left(x_{2 p+2}\right)=\cdots=l\left(x_{\gamma p+1}\right)+l\left(x_{(\gamma+1) p+2}\right)=k_{2}, \\
& \vdots \\
& l\left(x_{p-1}\right)+l\left(x_{2 p}\right)=l\left(x_{2 p-1}\right)+l\left(x_{3 p}\right)=\cdots=l\left(x_{(\gamma+1) p-1}\right)+l\left(x_{(\gamma+2) p}\right)=k_{p} . \\
& \text { and } k_{1}+k_{2}+\cdots+k_{p}=k .
\end{aligned}
$$

Proof. Since C_{n}^{p} is distance magic we obtain that $w\left(x_{0}\right)-w\left(x_{1}\right)=w\left(x_{1}\right)-$ $w\left(x_{2}\right)=\ldots=w\left(x_{n-1}\right)-w\left(x_{0}\right)=0$. Hence $w\left(x_{i}\right)-w\left(x_{i+1}\right)=l\left(x_{i-p}\right)+$ $l\left(x_{i+1}\right)-\left(l\left(x_{i}\right)+l\left(x_{i+1+p}\right)\right)=0$ for $i \in\{0,1, \ldots, n\}$.

Observation 5 Let C_{n}^{p} be distance magic graph, then for any $i \in\{0,1, \ldots, n-$ $1\}$:

$$
l\left(x_{i}\right)+l\left(x_{i+1}\right)+\ldots+l\left(x_{i+p-1}\right)=l\left(x_{i+2 p+2}\right)+l\left(x_{i+2 p+3}\right)+\ldots+l\left(x_{i+3 p+1}\right) .
$$

Proof. Since C_{n}^{p} is distance magic we obtain that $w\left(x_{i+p}\right)-w\left(x_{i+2 p+1}\right)=0$.

We show now some families of graphs C_{n}^{p} which are not distance magic.
Lemma 6 If $\operatorname{gcd}(2 p+2, n)=1$ and $n>2 p+1$, then C_{n}^{p} is not distance magic graph.
Proof. Since gcd $(2 p+2, n)=1$ then by Bézout's lemma there exist coefficients α, β such that $\alpha(2 p+2)+\beta n=1$. It follows that

$$
\begin{align*}
& 0+\alpha(2 p+2) \equiv 1(\bmod n) \\
& 1+\alpha(2 p+2) \equiv 2(\bmod n) \\
& \vdots \tag{1}\\
& p-1+\alpha(2 p+2) \equiv p(\bmod n)
\end{align*}
$$

Suppose that C_{n}^{p} is distance magic, by (1) and Observation 5 we obtain that

$$
l\left(x_{0}\right)+l\left(x_{1}\right)+\cdots+l\left(x_{p-1}\right)=l\left(x_{1}\right)+l\left(x_{2}\right)+\cdots+l\left(x_{p}\right) .
$$

Furthermore $l\left(x_{0}\right)=l\left(x_{p}\right)$, a contradiction.
Lemma 7 If $\operatorname{gcd}(2 p+2, n)=p+1$ and $n>2 p+1$, then C_{n}^{p} is not distance magic graph.

Proof. Since $\operatorname{gcd}(2 p+2, n)=p+1$ then there exist α, β such that $\alpha(2 p+$ $2)+\beta n=p+1$. It follows that

$$
\begin{align*}
& 0+\alpha(2 p+2) \equiv p+1(\bmod n) \\
& 1+\alpha(2 p+2) \equiv p+2(\bmod n) \\
& \vdots \tag{2}\\
& p-1+\alpha(2 p+2) \equiv p(\bmod n)
\end{align*}
$$

Let C_{n}^{p} be distance magic graph with magic constance k, then by (2) and Observation 5 we obtain that

$$
l\left(x_{0}\right)+l\left(x_{1}\right)+\cdots+l\left(x_{p-1}\right)=l\left(x_{p+1}\right)+l\left(x_{p+2}\right)+\cdots+l\left(x_{2 p}\right)=\frac{k}{2} .
$$

Analogously by (2) and Observation 5 we obtain $l\left(x_{1}\right)+l\left(x_{2}\right)+\cdots+l\left(x_{p}\right)=$ $l\left(x_{p+2}\right)+l\left(x_{p+3}\right)+\cdots+l\left(x_{2 p+1}\right)=\frac{k}{2}$. It follows that $l\left(x_{1}\right)=l\left(x_{p}\right)$, a contradiction.

Lemma 8 If $\operatorname{gcd}(p, n)=1$ and $n \neq 2 p+2$, then C_{n}^{p} is not distance magic graph.

Proof. Since $\operatorname{gcd}(p, n)=1$ then there exist coefficients α, β such that $\alpha n+$ $\beta p=1$. Suppose that C_{n}^{p} is distance magic. By Observation 4 we obtain that

$$
l\left(x_{0}\right)+l\left(x_{p+1}\right)=l\left(x_{p}\right)+l\left(x_{2 p+1}\right)=\cdots=l\left(x_{-(\beta+1) p}\right)+l\left(x_{-\beta p+1}\right)=k_{1}
$$

Applying $-\beta p+1 \equiv 0(\bmod n)$ we have $l\left(x_{p+1}\right)=l\left(x_{n-p-1}\right)$. Since $n \neq 2 p+2$, a contradiction.
Lemma 9 If p is odd and $n>2 p(p+1)$, then C_{n}^{p} is not distance magic graph.
Proof. Suppose that C_{n}^{p} is distance magic. Let k be a magic constance for C_{n}^{p}. Then by Observation 4

$$
\begin{aligned}
& l\left(x_{0}\right)+l\left(x_{p+1}\right)=l\left(x_{p}\right)+l\left(x_{2 p+1}\right)=\cdots=l\left(x_{\gamma p}\right)+l\left(x_{(\gamma+1) p+1}\right)=k_{1}, \\
& l\left(x_{1}\right)+l\left(x_{p+2}\right)=l\left(x_{p+1}\right)+l\left(x_{2 p+2}\right)=\cdots=l\left(x_{\gamma p+1}\right)+l\left(x_{(\gamma+1) p+2}\right)=k_{2}, \\
& \vdots \\
& l\left(x_{p-1}\right)+l\left(x_{2 p}\right)=l\left(x_{2 p-1}\right)+l\left(x_{3 p}\right)=\cdots=l\left(x_{(\gamma+1) p-1}\right)+l\left(x_{(\gamma+2) p}\right)=k_{p},
\end{aligned}
$$

and $k_{1}+k_{2}+\cdots+k_{p}=k$.
Let $l\left(x_{0}\right)=k_{0}$, then:

$$
l\left(x_{j(p+1)}\right)=\sum_{i=0}^{j}(-1)^{j-i} k_{i}
$$

for $j=1,2, \ldots, p$. If p is odd then $l\left(x_{p(p+1)}\right)=k_{p}-k_{p-1}+k_{p-2}-\cdots+k_{1}-k_{0}$. It follows that

$$
\begin{aligned}
& l\left(x_{(p+1)(p+1)}\right)=-k_{p}+k_{p-1}-k_{p-2}+\cdots+k_{2}+k_{0} \\
& l\left(x_{(p+2)(p+1)}\right)=k_{p}-k_{p-1}+k_{p-2}-\cdots+k_{3}-k_{0} \\
& \vdots \\
& l\left(x_{2 p(p+1)}\right)=k_{0}
\end{aligned}
$$

It follows that $l\left(x_{0}\right)=l\left(x_{2 p(p+1)}\right)=k_{0}$, a contradiction.
The following lemma shows that there exist infinitely many p 's such that $C_{2 p+2}^{p}$ admits distance magic labeling.

Lemma 10 If $n=2 p+2$, then C_{n}^{p} is distance magic graph.
Proof. Let

$$
\begin{array}{llll}
l\left(x_{0}\right)=1, & l\left(x_{1}\right)=2, & l\left(x_{2}\right)=3, & \ldots l\left(x_{p}\right)=p+1 \\
l\left(x_{p+1}\right)=n, & l\left(x_{p+2}\right)=n-1, & l\left(x_{p+3}\right)=n-2, & \ldots
\end{array} l\left(x_{2 p+2}\right)=p+2 .
$$

Notice that $k=p(n+1)=2 p(p+1)$. Observe that $\sum_{y \in N\left(x_{i}\right)} l(y)=$ $\frac{(n+1) n}{2}-l\left(x_{i}\right)-l\left(x_{(i+p+1)(\bmod n)}\right)=\frac{(n+1) n}{2}-(n+1)=2 p(p+1)$ for every $x_{i} \in V\left(C_{2 p+2}^{p}\right)$.

4 Distance magic labeling for C_{n}^{2} and C_{n}^{3}

Observe that if $n \leq 2 p+1$ then $C_{n}^{p} \cong K_{n}$ that is not distance magic. From now on we will assume that $n>2 p+1$.

Theorem 11 A graph C_{n}^{2} is not distance magic graph unless $n=6$.
Proof. There exists distance magic labeling of C_{6}^{2} by Lemma 10.
Let now $n>6$. By Lemma 8 we can also assume that n is even. Assume that C_{n}^{2} is distance magic. If k is a magic constance for C_{n}^{2}, then $k=2(n+1)$. We will consider few cases on congruency on n modulo 6 .

Case 1: $n \equiv 0(\bmod 6)$
Let $n=\alpha 6$ and $\alpha>1$. By Observation 4 we obtain:

$$
\begin{aligned}
& l\left(x_{0}\right)+l\left(x_{3}\right)=l\left(x_{2}\right)+l\left(x_{5}\right)=\cdots=l\left(x_{\alpha 6-2}\right)+l\left(x_{1}\right)=k_{1} \\
& l\left(x_{1}\right)+l\left(x_{4}\right)=l\left(x_{3}\right)+l\left(x_{6}\right)=\cdots=l\left(x_{\alpha 6-3}\right)+l\left(x_{0}\right)=l\left(x_{\alpha 6-1}\right)+l\left(x_{2}\right)=k_{2}
\end{aligned}
$$

Putting $l\left(x_{0}\right)=k_{0}$, we have:

$$
\begin{aligned}
& l\left(x_{6 i}\right)=i k_{2}-i k_{1}+k_{0} \\
& l\left(x_{6 i+3}\right)=-i k_{2}+(i+1) k_{1}-k_{0}
\end{aligned}
$$

for $j=1,2, \ldots, \alpha-1$.
Hence $l\left(x_{\alpha 6-3}\right)=-(\alpha-1) k_{2}+\alpha k_{1}-k_{0}$. Furthermore because $k_{2}=l\left(x_{\alpha 6-3}\right)+$ $l\left(x_{0}\right)=-(\alpha-1) k_{2}+\alpha k_{1}$ we obtain that $k_{1}=k_{2}$. It implies that $l\left(x_{0}\right)=l\left(x_{6}\right)$,
a contradiction.
Case 2: $n \equiv 2(\bmod 6)$ or $n \equiv 4(\bmod 6)$
By equation (5) we obtain:

$$
l\left(x_{0}\right)+l\left(x_{1}\right)=l\left(x_{2}\right)+l\left(x_{3}\right)=l\left(x_{4}\right)+l\left(x_{5}\right)=\cdots=l\left(x_{n-2}\right)+l\left(x_{n-1}\right)=k_{1}
$$

and

$$
l\left(x_{1}\right)+l\left(x_{2}\right)=l\left(x_{3}\right)+l\left(x_{4}\right)=l\left(x_{5}\right)+l\left(x_{6}\right)=\cdots=l\left(x_{n-1}\right)+l\left(x_{0}\right)=k_{2}
$$

Since $l\left(x_{0}\right)+l\left(x_{1}\right)+l\left(x_{3}\right)+l\left(x_{4}\right)=k, k_{2}+k_{2}=k$. Let $l\left(x_{0}\right)=k_{0}$, then:

$$
\begin{aligned}
& l\left(x_{2 i}\right)=i k-2 i k_{1}+k_{0} \\
& l\left(x_{2 i+1}\right)=(2 i+1) k_{1}-i k-k_{0}
\end{aligned}
$$

for $i=0,1, \ldots, \frac{n-2}{2}$. Hence $l\left(x_{n-1}\right)=(n-1) k_{1}-(n-2) k-k_{0}$. Recall that $l\left(x_{n-1}\right)+l\left(x_{0}\right)=k-k_{1}$. It implies that $k_{1}=k_{2}=\frac{k}{2}$ and moreover $l\left(x_{0}\right)=l\left(x_{2}\right)$, a contradiction.

Theorem 12 A graph C_{n}^{3} is not distance magic graph unless $n=8$ or $n=$ 24.

Proof. By Lemma 9 we can assume that $n \leq 24$.
Suppose first that $n=24$, then let

$$
\begin{array}{lllll}
l\left(x_{0}\right)=2, & l\left(x_{1}\right)=7, & l\left(x_{2}\right)=15, & l\left(x_{3}\right)=5, & l\left(x_{4}\right)=22, \\
l\left(x_{6}\right)=11, & l\left(x_{7}\right)=19 & l\left(x_{8}\right)=3, & l\left(x_{9}\right)=8, & l\left(x_{10}\right)=13, \\
l\left(x_{11}\right)=6, \\
l\left(x_{12}\right)=23, & l\left(x_{13}\right)=16, & l\left(x_{14}\right)=12, & l\left(x_{15}\right)=20, & l\left(x_{16}\right)=1,
\end{array} l\left(x_{17}\right)=9,1.2, l\left(x_{23}\right)=21 .
$$

It is easy to check that function l defined above is a distance magic labeling for C_{24}^{3}.

Let now $n<24$. For $n=8$ by Lemma 10 there exists distance magic labeling of C_{8}^{3}. By Lemmas 6,7 and 8 we need to consider only case when $n=18$. Assume that C_{18}^{3} is distance magic. Let k be a magic constance for C_{18}^{3}.

By Observation 4 we obtain:

$$
\begin{aligned}
& l\left(x_{0}\right)+l\left(x_{4}\right)=\ldots=l\left(x_{9}\right)+l\left(x_{13}\right)=l\left(x_{12}\right)+l\left(x_{16}\right)=l\left(x_{15}\right)+l\left(x_{1}\right)=k_{1} \\
& l\left(x_{1}\right)+l\left(x_{5}\right)=l\left(x_{4}\right)+l\left(x_{8}\right)=l\left(x_{7}\right)+l\left(x_{11}\right)=l\left(x_{10}\right)+l\left(x_{14}\right)=l\left(x_{13}\right)+l\left(x_{17}\right)=k_{2} \\
& l\left(x_{2}\right)+l\left(x_{6}\right)=l\left(x_{5}\right)+l\left(x_{9}\right)=l\left(x_{8}\right)+l\left(x_{12}\right)=l\left(x_{11}\right)+l\left(x_{15}\right)=l\left(x_{14}\right)+l\left(x_{0}\right)=k_{3}
\end{aligned}
$$

Putting $l\left(x_{0}\right)=k_{0}$ and $l\left(x_{2}\right)=k_{0}^{\prime}$, we have:

$$
\begin{array}{lll}
l\left(x_{4}\right)=k_{1}-k_{0}, & l\left(x_{8}\right)=k_{2}-k_{1}+k_{0}, & l\left(x_{12}\right)=k_{3}-k_{2}+k_{1}-k_{0}, \\
l\left(x_{6}\right)=k_{3}-k_{0}^{\prime}, & l\left(x_{10}\right)=k_{1}-k_{3}+k_{0}^{\prime}, & l\left(x_{14}\right)=k_{2}-k_{1}+k_{3}-k_{0}^{\prime} .
\end{array}
$$

Since $l\left(x_{14}\right)+l\left(x_{0}\right)=k_{3}$ we obtain $k_{0}^{\prime}=k_{2}-k_{1}+k_{0}$ what implies that $l\left(x_{6}\right)=k_{3}-k_{2}+k_{1}-k_{0}=l\left(x_{12}\right)$, a contradiction.

5 Distance magic labeling for (r, t)-hypercycles

We will start this section with few observations:
Observation 13 If $t>2$ and $r \leq \frac{t}{2}$ then ($\left.r, t\right)$-hypercycle is not distance magic.

Proof. Let H be a (r, t)-hypercycle of order n and size m. It easy to check that if $t=3$ and $m=2$, then H is not distance magic hypergraph. Let $m>2$ or $t>3$ and construct a graph G_{H} as in Section 2.

It follows that there exist $x, y \in V\left(G_{H}\right)$ such that they are adjacent and $N_{G_{H}}(x)=\left(N_{G_{H}}(y) \backslash\{x\}\right) \cup\{y\}$. Suppose that G_{H} is distance magic graph, then in particular the magic constance $k=\sum_{v \in N_{G_{H}}(x)} l(v)=\sum_{w \in N_{G_{H}}(y)} l(w)$. Hence $l(x)=l(y)$, a contradiction.

Observation 14 If t is even then $(t-2, t)$-hypercycle is not distance magic.
Proof. Let H be a (r, t)-hypercycle of order n and size m. Let construct a graph G_{H} as in Section 2. Observe that if t is even the graph G_{H} is $(2 t-3)-$ regular graph. By Observation $2 G_{H}$ is not distance magic.

Now we will prove our main theorem:
Theorem 15 If $t \in\{3,4\}$, then (r, t)-hypercycle of order n is distance magic if and only if $r=t-1$ and one of the following condition holds:

- $r=2$ and $n=6$,
- $r=3$ and $n=8$ or $n=24$.

Proof. Let H be a (r, t)-hypercycle of order n and size m. Let construct a graph G_{H} as in Section 2. Recall that if $r=t-1$ then $G_{H} \cong C_{n}^{t-1}$.

Suppose first that $t=3$ by Observation 13 and Theorem $11 H$ is distance magic if and only if $r=2$ and $n=6$.

Let $t=4$, then by Observations 13, 14 and Theorem $12 H$ is not distance magic unless $r=3$ and $n=8$ or $n=24$.

Since for H to be $(t-1, t)$-hypercycle of order n we have $G_{H} \cong C_{n}^{t-1}$ it is worthy also to notice the facts that follows immediately by Lemmas 6,8 , 9 and 10 :

Corollary 16 Let H be ($t-1, t)$-hypercycle of order n then:

- If $\operatorname{gcd}(2 t, n)=1$ then H is not distance magic hypergraph.
- If $\operatorname{gcd}(t-1, n)=1$ and $n \neq 2 t$ then H is not distance magic hypergraph.
- If t is even and $n>2 t(t-1)$ then H is not distance magic hypergraph.
- If $n=2 t$ then H is distance magic hypergraph.

At the end of the section we will put the following open problems:
Problem 17 Decide if (r, t)-hypercycle of is distance magic hypergraph for $\frac{t}{2}<n \leq t-2$.

Problem 18 Decide if $(t-1, t)$-hypercycle of order n is distance magic hypergraph for t even and $2 t<n \leq 2 t(t-1)$.

References

[1] S. Arumugam, D. Froncek, N. Kamatchi, Distance Magic Graphs - A Survey, J. Indones. Math. Soc., to appear.
[2] D. Froncek, P. Kovář and T. Kovářová, Fair incomplete tournaments, Bull. of ICA 48 (2006) 31-33.
[3] J.A. Gallian, A Dynamic Survey of Graph Labeling, Electronic Journal of Combinatorics, 5 (2010), DS13.
[4] I.M. Gessel, L.H. Kalikow Hypegraphs and a functional equation of Bouwkamp and De Bruijn, J. Comb. Theory A, Vol. 110(2), 2005, p. 275-289
[5] M.I. Jinnah, On Σ-labelled graphs, In Technical Proceedings of Group Discussion on Graph Labeling Problems, eds. B.D. Acharya and S.M. Hedge, 1999, 71-77.
[6] G.Y. Katona, H.A. Kierstead, Hamiltonian chains in hypergraphs, J. Graph Theory, 30 (1999), 205212.
[7] M. Miller, C. Rodger and R. Simanjuntak, Distance magic labelings of graphs, Australasian Journal of Combinatorics, 28 (2003), 305-315.
[8] S.B. Rao, Sigma Graphs - A survey, In Labelings of Discrete Structures and Applications, eds. B.D. Acharya, S. Arumugam and A. Rosa, Narosa Publishing House, New Delhi, (2008), 135-140.
[9] V. Vilfred, Σ-labelled graph and Circulant Graphs, Ph.D. Thesis, University of Kerala, Trivandrum, India, 1994.

[^0]: *The author was partially supported by National Science Centre grant nr 2011/01/D/ST/04104, as well as by the Polish Ministry of Science and Higher Education.

