
MATEMATYKA
DYSKRETNA
www.ii.uj.edu.pl/preMD/

Sylwia CICHACZ

Distance magic
(r, t)-hypercycles

Preprint Nr MD 057
(otrzymany dnia 1.01.2012)

Kraków
2012



Redaktorami serii preprintów Matematyka Dyskretna sa̧:
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Abstract

Let H = (V,E) be a hypergraph of order n. A distance magic
labeling of H is a bijection l : V → {1, 2, . . . , n} for that there exists a
positive integer k such that

∑
x∈N(v) l(x) = k for all v ∈ V , whereN(v)

is the neighborhood of v. In this paper we deal with (r, t)-hypercycles.
It was proved that (1, 2)-hipercycle of order n is a distance magic graph
if and only if n = 4 ([7]). In this paper we solve the similar problem
for t = 3, 4.
Keywords: Distance magic labeling, hypercycles.
2000 Mathematics Subject Classification: 05C78, 05C15

1 Introduction

A hypergraph H is a pair H = (V,E) where V is a set of vertices and E is a
set of non-empty subsets of V called hyperedges. The order of a hypergraph
H is denoted by |H| and the size is denoted by ∥H∥. If all edges have the
same cardinality t, the hypergraph is said to be t-uniform. Hence a graph
is 2-uniform hypergraph. Two vertices in a hypergraph are adjacent if there
is an edge containing both of them. The neighborhood NH(x) of a vertex

∗The author was partially supported by National Science Centre grant nr
2011/01/D/ST/04104, as well as by the Polish Ministry of Science and Higher Educa-
tion.
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x ∈ V (H) is the set of vertices adjacent to x.
The (r, t)-hypercycle, 1 ≤ r ≤ t − 1, is defined as t-uniform hypergraphs
whose vertices can be ordered cyclically in such a way that the edges are
segments of that cyclic order and every two consecutive edges share exactly
r vertices [6].

Distance magic labeling (also called sigma labeling) of a hypergraph H =
(V,E) of order n is a bijection l : V (H) → {1, 2, . . . , n} with the prop-
erty that there is a positive integer k (called magic constance) such that∑

y∈NH(x) l(y) = k for every x ∈ V (H). If a hypergraph H admits a distance
magic labeling, then we say that H is distance magic hypergraph.

The idea of distance magic labelling of a graph has been motivated by the
construction of magic squares. Finding an r-regular distance magic labeling
turns out equivalent to finding equalized incomplete tournament EIT(n, r)
[2]. A fair incomplete tournament of n teams with k rounds is a tournament
in which every team plays exactly k other teams and the total strength of
the opponents that each team misses during the tournament is the same for
all teams. For a survey, we refer the reader to [1].

The following observations were independently proved:

Observation 1 ([5], [7], [8], [9]) Let G be a r-regular distance magic graph

on n vertices. Then k = r(n+1)
2

.

Observation 2 ([5], [7], [8], [9]) No r-regular graph with r-odd can be a
distance magic graph.

It was proved in [7]:

Theorem 3 ([7]) The cycle Cn of length n is a distance magic graph if and
only if n = 4.

In this paper we consider the corresponding problem for (r, t)-hypercycles.
We show that if r ≤ t

2
then the (r, t)-hypercycle is not distance magic. We

will give also some results for (t−1, t)-hypercycles. In particular we complete
solve the case for t ∈ {3, 4}.

The paper is organized as follows. In the next section we show corre-
spondence between distance magic labeling (r, t)-hypercycles of order n and
distance magic labeling of some graphs. Some preliminary lemmas will be
proved in the third section. In forth section we characterize whenever Cp

n for
p = 2, 3 is distance magic graph. The main result and open problems are
stayed in the last section.
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2 Equivalent problem

For a hypergraph H of order n we define a graph GH as follows V (GH) =
V (H) and xixj ∈ E(GH) in and only if there exists an edge e ∈ E(H)
such that xi, xj ∈ e. Let l′ : V (H) → {1, 2, . . . , n} be any bijection. Define
l : V (GH) → {1, 2, . . . , n} such that l(xi) = l′(xi). Notice that

∑
y∈NH(x) l

′(y) =∑
v∈NGH

(x) l(v). Hence H is distance magic hypergraph if and only if GH is

distance magic graph.
The pth power of a graph G is a graph Gp with the same set of vertices

as G and an edge between two vertices if and only if there is a path of length
at most p between them. In this paper we will consider the pth power of a
cycle Cn. Notice that Cp

n is 2p-regular graph.
Notice that if H is (t− 1, t)-hypercycle then GH

∼= Ct−1
n .

3 Lemmas

In this section we present several useful lemmas.
Let w(x) =

∑
y∈NH(x) l(y) for every x ∈ V (H). We start with the observa-

tions:

Observation 4 Let Cp
n be distance magic graph with magic constance k,

then for any γ ∈ N:

l(x0) + l(xp+1) = l(xp) + l(x2p+1) = · · · = l(xγp) + l(x(γ+1)p+1) = k1,
l(x1) + l(xp+2) = l(xp+1) + l(x2p+2) = · · · = l(xγp+1) + l(x(γ+1)p+2) = k2,
...
l(xp−1) + l(x2p) = l(x2p−1) + l(x3p) = · · · = l(x(γ+1)p−1) + l(x(γ+2)p) = kp.

and k1 + k2 + · · ·+ kp = k.

Proof. Since Cp
n is distance magic we obtain that w(x0) − w(x1) = w(x1) −

w(x2) = . . . = w(xn−1) − w(x0) = 0. Hence w(xi) − w(xi+1) = l(xi−p) +
l(xi+1)− (l(xi) + l(xi+1+p)) = 0 for i ∈ {0, 1, . . . , n}.

Observation 5 Let Cp
n be distance magic graph, then for any i ∈ {0, 1, . . . , n−

1}:

l(xi) + l(xi+1) + . . .+ l(xi+p−1) = l(xi+2p+2) + l(xi+2p+3) + . . .+ l(xi+3p+1).

3



Proof. Since Cp
n is distance magic we obtain that w(xi+p)−w(xi+2p+1) = 0.

We show now some families of graphs Cp
n which are not distance magic.

Lemma 6 If gcd(2p + 2, n) = 1 and n > 2p + 1, then Cp
n is not distance

magic graph.

Proof. Since gcd(2p+2, n) = 1 then by Bézout’s lemma there exist coefficients
α, β such that α(2p+ 2) + βn = 1. It follows that

0 + α(2p+ 2) ≡ 1(modn)
1 + α(2p+ 2) ≡ 2(modn)
...
p− 1 + α(2p+ 2) ≡ p(modn)

(1)

Suppose that Cp
n is distance magic, by (1) and Observation 5 we obtain that

l(x0) + l(x1) + · · ·+ l(xp−1) = l(x1) + l(x2) + · · ·+ l(xp).

Furthermore l(x0) = l(xp), a contradiction.

Lemma 7 If gcd(2p+2, n) = p+1 and n > 2p+1, then Cp
n is not distance

magic graph.

Proof. Since gcd(2p + 2, n) = p + 1 then there exist α, β such that α(2p +
2) + βn = p+ 1. It follows that

0 + α(2p+ 2) ≡ p+ 1(modn)
1 + α(2p+ 2) ≡ p+ 2(modn)
...
p− 1 + α(2p+ 2) ≡ p(modn)

(2)

Let Cp
n be distance magic graph with magic constance k, then by (2) and

Observation 5 we obtain that

l(x0) + l(x1) + · · ·+ l(xp−1) = l(xp+1) + l(xp+2) + · · ·+ l(x2p) =
k

2
.

Analogously by (2) and Observation 5 we obtain l(x1)+ l(x2)+ · · ·+ l(xp) =
l(xp+2) + l(xp+3) + · · ·+ l(x2p+1) =

k
2
. It follows that l(x1) = l(xp), a contra-

diction.
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Lemma 8 If gcd(p, n) = 1 and n ̸= 2p + 2, then Cp
n is not distance magic

graph.

Proof. Since gcd(p, n) = 1 then there exist coefficients α, β such that αn +
βp = 1. Suppose that Cp

n is distance magic. By Observation 4 we obtain
that

l(x0) + l(xp+1) = l(xp) + l(x2p+1) = · · · = l(x−(β+1)p) + l(x−βp+1) = k1

Applying −βp+1 ≡ 0(modn) we have l(xp+1) = l(xn−p−1). Since n ̸= 2p+2,
a contradiction.

Lemma 9 If p is odd and n > 2p(p + 1), then Cp
n is not distance magic

graph.

Proof. Suppose that Cp
n is distance magic. Let k be a magic constance for

Cp
n. Then by Observation 4

l(x0) + l(xp+1) = l(xp) + l(x2p+1) = · · · = l(xγp) + l(x(γ+1)p+1) = k1,
l(x1) + l(xp+2) = l(xp+1) + l(x2p+2) = · · · = l(xγp+1) + l(x(γ+1)p+2) = k2,
...
l(xp−1) + l(x2p) = l(x2p−1) + l(x3p) = · · · = l(x(γ+1)p−1) + l(x(γ+2)p) = kp,

and k1 + k2 + · · ·+ kp = k.

Let l(x0) = k0, then:

l(xj(p+1)) =

j∑
i=0

(−1)j−iki

for j = 1, 2, . . . , p. If p is odd then l(xp(p+1)) = kp−kp−1+kp−2−· · ·+k1−k0.
It follows that

l(x(p+1)(p+1)) = −kp + kp−1 − kp−2 + · · ·+ k2 + k0
l(x(p+2)(p+1)) = kp − kp−1 + kp−2 − · · ·+ k3 − k0
...
l(x2p(p+1)) = k0

It follows that l(x0) = l(x2p(p+1)) = k0, a contradiction.

The following lemma shows that there exist infinitely many p’s such that
Cp

2p+2 admits distance magic labeling.
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Lemma 10 If n = 2p+ 2, then Cp
n is distance magic graph.

Proof. Let

l(x0) = 1, l(x1) = 2, l(x2) = 3, . . . l(xp) = p+ 1,
l(xp+1) = n, l(xp+2) = n− 1, l(xp+3) = n− 2, . . . l(x2p+2) = p+ 2.

Notice that k = p(n + 1) = 2p(p + 1). Observe that
∑

y∈N(xi)
l(y) =

(n+1)n
2

− l(xi) − l(x(i+p+1)(modn)) = (n+1)n
2

− (n + 1) = 2p(p + 1) for every
xi ∈ V (Cp

2p+2).

4 Distance magic labeling for C2
n and C3

n

Observe that if n ≤ 2p + 1 then Cp
n
∼= Kn that is not distance magic. From

now on we will assume that n > 2p+ 1.

Theorem 11 A graph C2
n is not distance magic graph unless n = 6.

Proof. There exists distance magic labeling of C2
6 by Lemma 10.

Let now n > 6. By Lemma 8 we can also assume that n is even. Assume
that C2

n is distance magic. If k is a magic constance for C2
n, then k = 2(n+1).

We will consider few cases on congruency on n modulo 6.

Case 1: n ≡ 0(mod 6)
Let n = α6 and α > 1. By Observation 4 we obtain:

l(x0) + l(x3) = l(x2) + l(x5) = · · · = l(xα6−2) + l(x1) = k1
l(x1) + l(x4) = l(x3) + l(x6) = · · · = l(xα6−3) + l(x0) = l(xα6−1) + l(x2) = k2

Putting l(x0) = k0, we have:

l(x6i) = ik2 − ik1 + k0
l(x6i+3) = −ik2 + (i+ 1)k1 − k0

for j = 1, 2, . . . , α− 1.
Hence l(xα6−3) = −(α−1)k2+αk1−k0. Furthermore because k2 = l(xα6−3)+
l(x0) = −(α−1)k2+αk1 we obtain that k1 = k2. It implies that l(x0) = l(x6),
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a contradiction.

Case 2: n ≡ 2(mod 6) or n ≡ 4(mod 6)
By equation (5) we obtain:

l(x0) + l(x1) = l(x2) + l(x3) = l(x4) + l(x5) = · · · = l(xn−2) + l(xn−1) = k1

and

l(x1) + l(x2) = l(x3) + l(x4) = l(x5) + l(x6) = · · · = l(xn−1) + l(x0) = k2

Since l(x0) + l(x1) + l(x3) + l(x4) = k, k2 + k2 = k. Let l(x0) = k0, then:

l(x2i) = ik − 2ik1 + k0
l(x2i+1) = (2i+ 1)k1 − ik − k0

for i = 0, 1, . . . , n−2
2
. Hence l(xn−1) = (n − 1)k1 − (n − 2)k − k0. Recall

that l(xn−1) + l(x0) = k − k1. It implies that k1 = k2 = k
2
and moreover

l(x0) = l(x2), a contradiction.

Theorem 12 A graph C3
n is not distance magic graph unless n = 8 or n =

24.

Proof. By Lemma 9 we can assume that n ≤ 24.
Suppose first that n = 24, then let

l(x0) = 2, l(x1) = 7, l(x2) = 15, l(x3) = 5, l(x4) = 22, l(x5) = 18,
l(x6) = 11, l(x7) = 19 l(x8) = 3, l(x9) = 8, l(x10) = 13, l(x11) = 6,
l(x12) = 23, l(x13) = 16, l(x14) = 12, l(x15) = 20, l(x16) = 1, l(x17) = 9,
l(x18) = 14, l(x19) = 4, l(x20) = 24, l(x21) = 17, l(x22) = 10, l(x23) = 21.

It is easy to check that function l defined above is a distance magic labeling
for C3

24.
Let now n < 24. For n = 8 by Lemma 10 there exists distance magic

labeling of C3
8 . By Lemmas 6, 7 and 8 we need to consider only case when

n = 18. Assume that C3
18 is distance magic. Let k be a magic constance for

C3
18.

By Observation 4 we obtain:

l(x0) + l(x4) = . . . = l(x9) + l(x13) = l(x12) + l(x16) = l(x15) + l(x1) = k1
l(x1) + l(x5) = l(x4) + l(x8) = l(x7) + l(x11) = l(x10) + l(x14) = l(x13) + l(x17) = k2
l(x2) + l(x6) = l(x5) + l(x9) = l(x8) + l(x12) = l(x11) + l(x15) = l(x14) + l(x0) = k3
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Putting l(x0) = k0 and l(x2) = k′
0, we have:

l(x4) = k1 − k0, l(x8) = k2 − k1 + k0, l(x12) = k3 − k2 + k1 − k0,
l(x6) = k3 − k′

0, l(x10) = k1 − k3 + k′
0, l(x14) = k2 − k1 + k3 − k′

0.

Since l(x14) + l(x0) = k3 we obtain k′
0 = k2 − k1 + k0 what implies that

l(x6) = k3 − k2 + k1 − k0 = l(x12), a contradiction.

5 Distance magic labeling for (r, t)-hypercycles

We will start this section with few observations:

Observation 13 If t > 2 and r ≤ t
2
then (r, t)-hypercycle is not distance

magic.

Proof. Let H be a (r, t)-hypercycle of order n and size m. It easy to check
that if t = 3 and m = 2, then H is not distance magic hypergraph. Let
m > 2 or t > 3 and construct a graph GH as in Section 2.

It follows that there exist x, y ∈ V (GH) such that they are adjacent and
NGH

(x) = (NGH
(y) \ {x}) ∪ {y}. Suppose that GH is distance magic graph,

then in particular the magic constance k =
∑

v∈NGH
(x) l(v) =

∑
w∈NGH

(y) l(w).

Hence l(x) = l(y), a contradiction.

Observation 14 If t is even then (t−2, t)-hypercycle is not distance magic.

Proof. Let H be a (r, t)-hypercycle of order n and size m. Let construct a
graph GH as in Section 2. Observe that if t is even the graph GH is (2t− 3)-
regular graph. By Observation 2 GH is not distance magic.

Now we will prove our main theorem:

Theorem 15 If t ∈ {3, 4}, then (r, t)-hypercycle of order n is distance magic
if and only if r = t− 1 and one of the following condition holds:

• r = 2 and n = 6,

• r = 3 and n = 8 or n = 24.
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Proof. Let H be a (r, t)-hypercycle of order n and size m. Let construct a
graph GH as in Section 2. Recall that if r = t− 1 then GH

∼= Ct−1
n .

Suppose first that t = 3 by Observation 13 and Theorem 11 H is distance
magic if and only if r = 2 and n = 6.

Let t = 4, then by Observations 13, 14 and Theorem 12 H is not distance
magic unless r = 3 and n = 8 or n = 24.

Since for H to be (t − 1, t)-hypercycle of order n we have GH
∼= Ct−1

n it
is worthy also to notice the facts that follows immediately by Lemmas 6, 8,
9 and 10:

Corollary 16 Let H be (t− 1, t)-hypercycle of order n then:

• If gcd(2t, n) = 1 then H is not distance magic hypergraph.

• If gcd(t−1, n) = 1 and n ̸= 2t then H is not distance magic hypergraph.

• If t is even and n > 2t(t− 1) then H is not distance magic hypergraph.

• If n = 2t then H is distance magic hypergraph.

At the end of the section we will put the following open problems:

Problem 17 Decide if (r, t)-hypercycle of is distance magic hypergraph for
t
2
< n ≤ t− 2.

Problem 18 Decide if (t− 1, t)-hypercycle of order n is distance magic hy-
pergraph for t even and 2t < n ≤ 2t(t− 1).
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Bull. of ICA 48 (2006) 31–33.

[3] J.A. Gallian, A Dynamic Survey of Graph Labeling, Electronic Journal
of Combinatorics, 5 (2010), DS13.

9



[4] I.M. Gessel, L.H. Kalikow Hypegraphs and a functional equation of
Bouwkamp and De Bruijn, J. Comb. Theory A, Vol. 110(2), 2005, p.
275 - 289

[5] M.I. Jinnah, On Σ-labelled graphs, In Technical Proceedings of Group
Discussion on Graph Labeling Problems, eds. B.D. Acharya and S.M.
Hedge, 1999, 71-77.

[6] G.Y. Katona, H.A. Kierstead, Hamiltonian chains in hypergraphs, J.
Graph Theory, 30 (1999), 205212.

[7] M. Miller, C. Rodger and R. Simanjuntak, Distance magic labelings of
graphs, Australasian Journal of Combinatorics, 28 (2003), 305-315.

[8] S.B. Rao, Sigma Graphs - A survey, In Labelings of Discrete Structures
and Applications, eds. B.D. Acharya, S. Arumugam and A. Rosa, Narosa
Publishing House, New Delhi, (2008), 135-140.

[9] V. Vilfred, Σ-labelled graph and Circulant Graphs, Ph.D. Thesis, Uni-
versity of Kerala, Trivandrum, India, 1994.

10


