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Abstract

A graph G is called H-stable if G− u contains a subgraph isomorphic
to H for arbitrary chosen u ∈ V (G). The minimum size among the sizes
of all H-stable graphs is denoted by stab(H). It is known that ‖H‖+∆H

and ‖H‖ + |H| are, respectively, the lower and upper general bound for
stab(H), satisfied for every graph H. We give the exact values of stab(H)
and characterize all H-stable graphs with minimal size for H being any
complete k-partite graph, which is a generalization of the results of Dudek
and Żak regarding to complete bipartite graphs. In particular, we show
that, dependently on the orders of components of partition of H, stab(H)
is equal to the lower or the upper general bound (no in-between value is
possible).
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MSC: 05C35, 05C60

1 Introduction

Consider a network of sensors (processors, transmitters etc.). We require that
given configuration of connections between the sensors is assured even in the
case of a failure of one of them. Assuming that the connections between sensors
are more costly than the sensors we are interested in establishing the structure of
a fault-tolerant network of minimal cost with respect to the given configuration.

More formally, we consider only simple graphs without loops, multiple edges
and isolated vertices. We are using the standard notation of graph theory [2]
and some of the notation introduced in [3]. Let H be any graph with set of
vertices V (H) and set of edges E(H). A graph G is said to be (H, k)- vertex
stable if G contains a subgraph isomorphic to H after removing any k of its
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vertices. If k = 1 we say shortly that G is H-stable. Moreover, stab(H) denotes
the minimum of sizes of all H-stable graphs. The order and the size of H are
denoted by n and m respectively.

The exact values of stab(H) are known some basic classes of graphs, e.g.
Kn, Kp,q [5]. Moreover, the exact value of stab(Cn) is known for some infinite
classes of n [1]. The (H, k)-stable graphs of minimal size were characterized for
H being C3, C4,K4,K1,m [3], K5 [6] and Kn for k large enough [7]. The general
bounds of the value of stab(H) are following.

Proposition 1 ([5]). Let H be any graph with n vertices and m edges. Then

m + ∆H ≤ stab(H, 1) ≤ min{m + n, 2m} (1)

Remark 1. A star (Km,1) is the only graph for which the general lower bound
is equal to the upper one (1). Therefore stab(Km,1) = 2m [3].

The Kn,n-stable and Kn,n+1-stable graphs of minimal size were characterized
in [4]. That results was generalized [5] to all complete bipartite graphs as follows.

Theorem 2 ([5]). Let p ≥ q ≥ 2. Then for H = Kp,q

stab(H) =
{

pq + p for p− q = 1
pq + p + q for p− q 6= 1.

Moreover, in [5] all Kp,q-stable graphs of minimal size was characterized.
Namely, if p = q + 1 > 2 then Kp,p is the only Kp,q-stable graph of minimal
size. Otherwise, if p ≥ 4, q ≥ 2 and p ≥ q then the only Kp,q-stable graph of
minimal size are G1 = Kp,q ∗K1 and G2 = Kp+1,q+1− e, where e is any edge of
Kp+1,q+1.

Keeping the assumption that H = Kp,q with p ≥ q ≥ 2 we can formulate
(2) in the following way,

stab(H) =
{

m + ∆H for p− q = 1
m + n for p− q 6= 1.

Observe that stab(Kp,q) achieves exactly the lower or the upper bound of (1)
and no in-between value of is possible. Before we show that this property holds
in more general case of k-partite complete graphs with k ≥ 2 we prove two
useful lemmas.

Lemma 3. Let H be a graph such that δH > 1. If G is H-stable graph of
minimal size, and |G| = n + s then

||G|| = stab(H) ≥


m + ∆H if s = 1
m + ∆H + (s− 1)δH −

(
s
2

)
if 2 ≤ s ≤ δH

m + ∆H + 1
2 (s− 1)(δH − 1) if δH + 1 ≤ s ≤ ∆H

m + 1
2 (∆H + (s− 1)δH) if ∆H + 1 ≤ s.

(2)
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Proof. The case s = 1 is a straightforward consequence of (1). Then we
only have to show the cases with s > 1. First, observe that if H contains t
vertices of degree ∆H then G contains at least t + 1 vertices of degree at least
∆H . Consider now the vertices included in V (G) \ V (H ′), where H ′ is some
subgraph of G isomorphic to H. Each of them is of degree at least δH [3], and
moreover (at least) one of them has degree greater or equal to ∆H . Therefore∑

v∈V (G)\V (H′)

degG(v) ≥ ∆H + (s− 1)δH . (3)

Now we use (3) to assess the number edges in G. Each edge incident with some
vertex of V (G) \ V (H ′) is counted once or twice in (3).

(i) 2 ≤ s ≤ δH +1. At most
(

s
2

)
edges incident to the vertices of V (G)\V (H ′)

are counted twice in (3).

(ii) δH +1 ≤ s ≤ ∆H . There are at least ∆H edges incident with some vertex
u ∈ V (G) \ V (H ′) and at least 1

2 (s − 1)(δH − 1) edges incident with the
vertices of V (G− u) \ V (H ′).

(iii) δH + 1 ≤ s ≤ ∆H . All the edges can be counted twice in (3).

Lemma 4. Let H be a graph such that δH > 1. If G is H-stable graph of
minimal size, and |G| = n + s. Then

||G|| = stab(H) ≥


m + ∆H if s = 1
m + ∆H + δH − 1 if 2 ≤ s ≤ δH

m + ∆H + 1
2δH(δH − 1) if δH + 1 ≤ s ≤ ∆H

m + 1
2 (∆H + ∆HδH) if ∆H + 1 ≤ s.

(4)

where the exact bounds of (4) can be achieved only for s = 1, s = 2, s = δH +1
and s = ∆H + 1.

Proof. It is a simple consequence of Lemma 3 and fact that the expressions
of right-side part of (2) are increasing (with respect to the domain) functions of
variable s.

2 Complete k-partite graphs

Theorem 5. Let H be a complete k-partite graph H = Kn1n2...nk
with k ≥ 2

and n1 ≥ n2 ≥ . . . ≥ nk such that H 6= Km,1. Then

stab(H) =
{

m + ∆H for n1 = n2 = . . . = nk−1 = nk + 1
m + n otherwise
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Proof. Since the theorem is proved for k = 2 [5] we assume that k ≥ 3.
I. Let n1 = n2 = . . . = nk−1 = nk + 1. It can be easily checked that G =
Kn1n1...n1 is H-stable and ||G|| = m + ∆H . Due to (1) we know that there is
no H-stable graph of smaller size which completes the proof of this case.
II. Now consider any k-partite complete graph H different than defined in I. Let
G be an H-stable graph. First, due to Lemma 4 and facts that δH = n−n1 and
∆H = n− nk, we can observe that if |G| ≥ n + 2 then ||G|| ≥ m + n. Therefore
we assume that |G| = n + 1.

Now let us transform our problem to equivalent one. Since we are assuming
that |G − x| = n then, in fact, V (G − x) = V (H ′) for any x ∈ V (G) where
H ′ ⊂ G− x is isomorphic to H. Therefore

(G− x ⊃ H ′) ⇔ (H ′ ⊃ G− x).

Now we are interested in maximizing the size of G such that G− x is isomorphic
with some subgraph of H for arbitrary chosen x.

H is a union of k cliques (of orders n1, n2, . . . , nk), hence graph G− x has
at least k components of connectivity for any x ∈ V (G). Since each connected
graph of order greater than one contains a vertex which can be removed without
loosing connectivity, we conclude that graph G also consists of at least k com-
ponents of connectivity (of orders, say, r1, . . . , rk+t, such that r1 ≥ . . . ≥ rk+t

with t ≥ 0 ).
Of course

n + 1 = n1 + . . . + nk + 1 = r1 + . . . rk+t. (5)

Consider the multiset Rj := {r1, . . . , rj−1, rj − 1, rj+1, . . . , rk+t}. For each j ∈
{1, . . . k + t} there must exist a partition of Rj into k subsets R1

j , . . . , R
k
j such

that, due to (5), the sum of elements of Ri
j is equal to ni.

First assume that s = 0 (G consists of exactly k components of connectivity).
In that case the partition of Rj into k subsets is unique (exact to the labeling
of the subsets) - each subset consists just of one element. Then the equality
r1 = . . . = rk must be satisfied. Indeed, if rj 6= rl then Rj 6= Rl and at least
one of Rj , Rl does not correspond to given sequence of clique orders in H. The
equality of all ri’s implies that n1 = . . . = nk−1 = nk + 1, but this is exactly
the case already considered in I, which is exluded in II.

Assume now that s > 0. Obviously

||G|| ≤
(

r1

2

)
+ . . . +

(
rk+t

2

)
. (6)

Consider now the partition of Rk+t corresponding to G− x, where x belongs
to the (k + t)th component of G. It is clear that for each i = 1 . . . k not more
than

(
ni

2

)
edges of G− x can be included in a component of H of order ni.

Therefore

||G− x|| ≤
(

n1

2

)
+ . . . +

(
nk

2

)
. (7)
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(i) If each component of G is a clique, t = 1, rk+1 = 1 and ri = ni for
i = 1 . . . k, we obtain

||G|| = ||G− x|| =
(

n1

2

)
+ . . . +

(
nk

2

)
,

and consequently

||G|| =
(

n + 1
2

)
− ||G|| = n +

(
n

2

)
−

(
n1

2

)
− . . .−

(
nk

2

)
= m + n.

The graph G constructed in that way is isomorphic with K1 ∗H which is
H-stable [5].

(ii) If (i) is not satisfied then some Rl
k+t consists of two (or more) elements.

Consequently, in lth component of H two (or more) disjoint components
of G− x are included, leaving unused the edges of H between them. The
number of that unused edges is minimal if there only two disjoint compo-
nents being cliques. Assuming that the orders of that disjoint cliques are,
say a and b, then ab unused edges are in H. Since the two smallest cliques
in G− x are of orders not less than 1 and rk+t we obtain that

||G− x|| ≤
(

n1

2

)
+ . . . +

(
nk

2

)
− rk+t,

and, consequently,

||G|| = ||G− x||+ rk+t − 1 ≤
(

n1

2

)
+ . . . +

(
nk

2

)
− 1

which is less then in case (i).

This shows that in case II there is no H-stable graph G containing less than
m + n edges which ends the proof.

Theorem 6. Let H be a complete k-partite graph H = Kn1n2...nk
with k ≥ 3

and n1 ≥ n2 ≥ . . . ≥ nk such that H 6= Km,1 and H 6= K3. Then the only
H-stable graph of minimal size is Kn1,...,n1 if n1 = n2 = . . . = nk−1 = nk + 1
and H ∗K1 otherwise.

Proof.
I The case n1 = n2 = . . . = nk−1 = nk + 1. Let G be a H-stable graph of
minimal size, i.e. ||G|| = m+∆H . If |G| > n+1 then, as it was already showed
in the proof of Theorem 5, ||G|| ≥ m+n > m+∆H - a contradiction. Therefore
we assume that |G| = n + 1. It is easy to observe that δG = ∆G = ∆H . Indeed,
if δG ≤ ∆H − 1 = δH then removing some neighbour of a vertex of degree δG

we obtain a graph of minimal degree less than δH , which cannot contain H as a
subgraph. On the other hand, if ∆G > ∆H then ||G|| > 1

2 (n+1)∆H = m+∆H

- a contradiction. Therefore ||G− u|| = m and, in consequence, G− u ∼= H for
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arbitrary chosen vertex u. It is clear that the only graph satisfying this property
is the complete k-partite graph with all components of partition of order n1.
II The ”otherwise” case. Let G be a H-stable graph of minimal size, i.e. ||G|| =
m + n
1. If |G| = n + 1 then, accordingly to the proof of Theorem 5, G = H ∗K1 is
the only H-stable graph of minimal size.
2. Assume, as a contrary, that |G| = n + s with s > 1. Due to Lemma 4, after
some calculations, we observe that there may exist an H-stable graph of size
m+n only if k = 3 and n2 = n3 = 1 and if one of the following cases is satisfied:

a) s = 2

b) s = 3 with ∆H ≥ 3.

c) s = 3 with ∆H = 2.

We show that, in fact, even in this cases there is no H-stable graph of size m+n
and order greater than n + 1. First observe that since k = 3 and n2 = n3 = 1
then δH = 2 and ∆H = n− 1. If ∆H = δH = 2, then, in fact, H = K3 which is
excluded in theorem’s assumptions (it is easy to observe that the only K3-stable
graph of minimal size are K4 and 2K3). Therefore it is enough to focus only
the cases a) and b) assuming that ∆H ≥ 3.

Case a) If ∆G ≥ ∆H +1 = n then ||G− ū|| ≤ (m+n)−n, where degG(ū) =
∆G. Since G−ū contains not more than m edges incident with n+1 non-isolated
vertices it cannot contain H as a subgraph.

Consider now the case ∆G = ∆H = n− 1. Observe that since n2 = n3 = 1
then there exist vertices u and u′ of degree ∆H in H. If G − u contains H ′

as a subgraph, where H ′ is isomorphic to H then there must exist some vertex
v ∈ V (G−u) such that H ′ is a subgraph of G−{u, v}. If we show that δG−u = 2
we obtain a contradiction, because then ||G− {u, v}|| ≤ ||G− u|| − 2 = m− 1.
Indeed, since H ′ is a subgraph of G then V (G) = V (H ′) ∪ {x, y} and, w.l.o.g.
degG(x) ≥ 2 and degG(y) ≥ ∆H = n − 1. Note that ux, u′x, uy, u′y 6∈ E(G)
(otherwise ∆G > ∆H). Then y is connected with all vertices except u and
u′, hence each vertex of G except x is of degree at least three. Consequently
δG−u ≥ 2.

Case b) Let H ′ be some copy H being a subgraph of G. Then we may
assume that V (G) = V (H ′)∪ {x, y, z} such that degG(x) ≥ 2, degG(y) ≥ 2 and
degG(z) ≥ ∆H = n−1. If xy 6∈ E(G) then ||G|| ≥ m+2+2+n−1−2 > m+n
- a contradiction.

Therefore assume that xy ∈ E(G). Since G is a H-stable graph of minimal
size then xy is included in some copy of H, say H ′′, being a subgraph of G.
In that case x and y are not in the same component of partition of H ′′, hence
at least one of vertices x, y has degree at least ∆H ≥ 3. Therefore ||G|| ≥
m + 2(n− 1) + 2−

(
3
2

)
> m + n, a contradiction.
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