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Small systems of Diophantine equations which have
only very large integer solutions

Apoloniusz Tyszka

Abstract. Let f:N\{0O} >N be a recursively enumerable function,
E,={xi=1, xi+xj=x, x;-x; = x,: 1, j,k € {1,...,n}}. We prove that there is
an algorithm that computes a positive integer m for which an another algorithm
accepts on the input any integer n > m and returns a system S C E, such that
S has infinitely many integer solutions and each integer tuple (xi,...,x,) that
solves § satisfies x; = f(n). For each integer n > 12 we construct a system
S C E, such that S has infinitely many integer solutions and they all belong to

n—1 n—1
Zn\[_22 ,22 r.

Key words and phrases: computable upper bound for the heights of integer (ra-
tional) solutions of a Diophantine equation, Davis-Putnam-Robinson-Matiyasevich
theorem, Diophantine equation with a finite number of integer (rational) solutions,
recursively enumerable function.
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This article is a shortened version of the preprint [6]. We present a general
method for constructing small systems of Diophantine equations which have only
very large integer solutions. Let @, denote the following statement

Vxi,....,.x,€Z3y,..., v, €Z
2n—1
(2% <ll= (ul <l V...Vl <)) A

(Vi ok € (1,...on} (i + X = X = yi + 3 = ) A (1)
Vi, ok € {l,...onp (X xj = X = yi-y; = W) 2)
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n—1
For n > 2, the bound 22 cannot be decreased because for

n—1 n-2 n-3
(xl,...,xn)=(22 22" 92 ...,256,16,4,2)

the conjunction of statements (1) and (2) guarantees that

n—1 n-2 n-3
Glaeeeay) = 0,0 0V ey = (227,227,227 110256,16,4,2)

The statement Vn®, has powerful consequences for Diophantine equations,
but is still unproven, see [S)]. In particular, it implies that if a Diophantine equation
has only finitely many solutions in integers (non-negative integers, rationals), then
their heights are bounded from above by a computable function of the degree and
the coeflicients of the equation. For integer solutions, this conjectural upper bound
can be computed by applying equation (3) and Lemmas 2] and

The statement Yn®, is equivalent to the statement Yn'¥,,, where ¥,, denote the
statement
Vxi,....%,€Z3Ay1,..., vy, €Z

n—1 n
(22 < x| = max(|xil, ..., |x,l) < 2% — (xl <l V... Vixl< |J’n|)) A

(Vi jok € (1.0} (6 + X = 5 = yi +y; = 30) A
Vi, ke{l,....,n} (xi-X; =X = Yi*y; = Yr)

In contradistinction to the statements ®,, each statement ¥, can be confirmed by
a brute-force search in a finite amount of time.

The statement
YaoVx,...,x, €ZAy1,.... 0 €EZ

@2 <l = bl < i) A
Vi, jkell,...,n} (xi+x; =x =y +y; =) A
Vi,jke{l,....n} (xi-X; =X = Yyi"y; = W)
strengthens the statement Ya®, but is false, as we will show in the Corollary.

Let

E,={xi=1, xi+xj =X, xi-x; =X, : 1, k€ {l,...,n}}



To each system S C E, we assign the system S defined by

S \{xi=1:1i€f{l,...,n}HhVU
{x;-xj=x;:i,j€{l,...,n}and the equation x; = 1 belongs to §'}

In other words, in order to obtain S we remove from S each equation x; = 1 and
replace it by the following n equations:

Xi X1 = X1
Xi Xy = X
Lemma 1. For each system S C E,

(X1, s %) €Z": (X1,...,x,) solves S} =
{(x1,....,x) €Z" : (x1,...,x,) s0lves S} U{(0,...,0)}

Lemma 2. The statement ®©,, can be equivalently stated thus: if a system S C E,

has only finitely many solutions in integers xi,...,Xx,, then each such solution
n-1

(x1,...,X,) satisfies |xi],...,|x,| < 22"

Proof. It follows from Lemmal I} m|

Nevertheless, for each integer n > 12 there exists a system S C E, which has

n—1 n—1
infinitely many integer solutions and they all belong to Z" \ [—22 , 22 1". We
will prove it in Theorem [I] First we need few lemmas.

Lemma 3. If a positive integer n is odd and a pair (x,y) of positive integers solves
the negative Pell equation x> — dy* = —1, then the pair

(x+yVa) +(x-yVd)' (x+yVd) - (x-yVd)
2 ’ 2Vd

consists of positive integers and solves the equation x* — dy* = —1.
Lemma 4. The pair (2, 1) solves the equation x> — 5y* = —1.

Lemma 5. If a pair (x,y) solves the equation x* —5y* = —1, then the pair
(9x + 20y, 4x + 9y) solves this equation too.



Lemma 6. ([l} p. 141, Theorem 3.4.1]) Lemmas 4] and 5 allow us to compute all
positive integer solutions to x> — 5y* = —1.

Theorem 1. For each integer n > 12 there exists a system S C E, such that S

- n—1 n—1
has infinitely many integer solutions and they all belong to Z" \ [—22 , 22 1"
Proof. By Lemmas the equation u?> — 5v* = —1 has infinitely many solutions
in positive integers and all these solutions can be simply computed. For a positive
integer n, let (u(n), v(n)) denote the n-th solution to u?> — 5v> = —1. We define S as

X1:1 X1+ X1 =X X2+ X2 = X3 X1+ X3 = X4
X4+ X4 = X5 X5+ X5 = Xg X6+ X7 = X3 Xg + Xg = Xog
X10 * X10 = X11 X1+ X1 = X2 X4+ X9 = X712
X12 - X12 = X13 X13 © X13 = X14 Xn—1* Xn-1 = Xy

The first 11 equations of S equivalently expresses that x3, — 5 - x; = —1 and 625
divides xs. The equation x3, — 5% - x3 = —1 expresses the same fact. Execution of
the following MuPAD code

X:=2:

y:=1:

for n from 2 to 313 do

u:=9*%x+20%y:

V:i=4*%x+9%y:

if igcd(v,625)=625 then print(n) end_if:
X:=u:

yi=v:

end_for:

float(ur2+1);

float (24 (24 (12-1)));

returns only n = 313. Therefore, in the domain of positive integers, the minimal

v(3 13))

solution to x7, — 5% - x3 = —1 is given by the pair (Xlo = u(313), x = =575

Hence, if an integer tuple (xi, ..., x,) solves S, then |xg| > v(313) and

12-1
X=Xy +1>uB13) +1> 22

The final inequality comes from the execution of the last two instructions
of the code, as they display the numbers 1.263545677¢783 and
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n—1
3.231700607e616.  Applying induction, we get x, > 22", By Lemma
(or by [8] p. 58, Theorem 1.3.6]), the equation xj, —5°-x3 = —1 has infinitely
many integer solutions. This conclusion transfers to the system S.

O

J. C. Lagarias studied the equation x> —dy* = -1 for d = 5***!, where
n=0,1,2,3,.... His theorem says that for these values of d, the least integer
solution grows exponentially with d, see [3, Appendix A].

The next theorem generalizes Theorem[I] But first we need Lemma([7]together
with introductory matter.

For a Diophantine equation D(xi,...,x,) = 0, let M denote the maximum
of the absolute values of its coefficients. Let 7 denote the family of all polyno-
mials W(xy,...,x,) € Z[xi,...,x,] whose all coefficients belong to the interval
[-M, M] and deg(W, x;) < d; = deg(D, x;) for each i € {1,..., p}. Here we con-
sider the degrees of W(xy, ..., x,) and D(xy, ..., x,) with respect to the variable x;.
It is easy to check that

card(T) = @M + D1+ Do (dp + 1) "

To each polynomial that belongs to 7 \ {x;,...,x,} we assign a new vari-
able x; with i € {p + 1,...,card(7)}. Then, D(xy,...,x,) = x, for some
q €{l1,...,card(7)}. Let H denote the family of all equations of the form

xi=1xi+xj=x,x-x;=x¢ (i, j,ke{l,...,card(7)})

which are polynomial identities in Z[xy, ..., x,]. If some variable x,, is assigned to
a polynomial W(x,...,x,) € 7, then for each ring K extending Z the system H
implies W(xi,...,x,) = x,,. This observation proves the following Lemma 7|

Lemma 7. The system H U {x, + x, = x,} is algorithmically determinable. For
each ring K extending Z, the equation D(x,, ..., x,) = 0 is equivalent to the system
H U {x; + x4 = x4} € Ecarary. Formally, this equivalence can be written as

Vx; €K...Vx, € K(D(xi,....x,) = 0 & Ixpurs.. . Xewarr) € K

(X1, .25 Xp, Xpils - -+ Xcard(r)) SOlves the system H U {x, + x, = xq})

For each ring K extending Z, the equation D(xi, . .., x,) = 0 has only finitely many
solutions in K if and only if the system H U {x, + x, = x,} has only finitely many
solutions in K.



To see how Lemmal(7|works in a concrete case, let us take D(xy, x,) = x-x,—1.
Then, p =2, M =1,d, =d, = 1,card(7) = (2- 1 + 1)I+DU+D = 3% — g1 The
following MuPAD code

2:
1:

O 0 =T
N = ]

_1:=1: \ p
_ 1: / lines

mo:=[]:

for il from O to d_1 do \ p

for i2 from 0 to d_2 do / lines

mo :=append (mo,x14(il1)*x24(i2)): (p variables)
end_for: \ p

end_for: / lines

T:=[x1,x2]: (p variables)

for j1 from -M to M do \

for j2 from -M to M do \ (d_1+1) ... (d_p+1)
for j3 from -M to M do / lines

for j4 from -M to M do /

if (j1*mo[1]+j2*mo[2]+j3*mo[3]+j4*mo[4]<>x1) and
(J1*mo[1]+j2*mo[2]+]j3*mo[3]+j4*mo[4]<>x2)

then T:=append(T,jl*mo[1]+j2*mo[2]+j3*mo[3]+j4*mo[4]) end_if:
end_for: \

end_for: \ (d_1+1) ... (d_p+1)

end_for: / lines

end_for: /

print(T):

for p from 1 to nops(T) do

if T[pl=1 then print(p) end_if:

end_for:

for q from 1 to nops(T) do

if T[gq]=x1*x2-1 then print(q) end_if:

end_for:
Hl:=[]:
H2:=[]:

for i from 1 to nops(T) do
for j from 1 to nops(T) do
for k from 1 to nops(T) do



if T[i]+T[j]1=T[k] then HIl:=append(H1l,[i,j,k]) end_if:
end_for:

end_for:

end_for:

print (nops(H1)):

print (H1):

for i from 1 to nops(T) do

for j from 1 to nops(T) do

for k from 1 to nops(T) do

if T[i]*T[j]1=T[k] then H2:=append(H2,[i,j,k]) end_if:
end_for:

end_for:

end_for:

print (nops(H2)):

print (H2):

first displays the list 7 which enumerates the elements of 7 starting from x;
and x,. The code finds that T[68] = 1 and T[17] = x; - x, — 1. Next, the
code initializes empty lists H1 and H2. In H1, it stores all triplets [i, j, k] with
T[i]+T[j] = T[k]. In H2, it stores all triplets [i, j, k] with T[i] - T[j] = T[k]. The
following system

Xeg = 1
xi+x; = xi ([i, )kl € HI)
Xi+Xj = Xk ([la ]9k] € H2)
X7 +X17 = Xy7

consists of 1 + 2401 + 485 + 1 equations and is equivalent to x; - x, — 1 = 0.
The Davis-Putnam-Robinson-Matiyasevich theorem states that every recur-
sively enumerable set M C N” has a Diophantine representation, that is

(ar,...,ap) E M= Axy,....,x, €N W(ay,...,a,,x1,...,%,) =0 (4)

for some polynomial W with integer coefficients, see [4] and [2]]. The representa-
tion (4) is algorithmically determinable, if we know a Turing machine M such that,
forall (ay,...,a,) € N, M haltson (ay,...,a,)ifand only if (ay, ..., a,) € M, see
[4] and [2]].



Theorem 2. Let f : N\ {0} — N be a recursively enumerable function. Then there
is an algorithm that computes a positive integer m for which an another algorithm
accepts on the input any integer n > m and returns a system S C E, such that
S has infinitely many integer solutions and each integer tuple (xi,...,x,) that
solves S satisfies x; = f(n).

Proof. By the Davis-Putnam-Robinson-Matiyasevich theorem and Lemmal[7] there
is an integer s > 3 such that for each integers xi, x,

x1 = f(x) &= dx;,...,x; € Z Y(x1,x2,...,X;) 5
where the formula Y(xy, x», .. ., xy) is algorithmically determined as a conjunction
of formulae of the form x; = 1, x; + x; = x, x; - xj = x¢ (i, k€ {1,...,s}). Let

m = 8 + 2s, and let [-] denote the integer part function. For each integer n > m,

n m m
—|=l-d4=-s>m—-|=|-4d4-s>m-——-4-5=
n [2] 4—s>m [2] 4—s>m > 4—-5=0

Let S denote the following system

all equations occurring in W(xy, xa, ..., Xy)
n-— [%] — 4 — s equations of the form z; = 1
1 = 1
Hh+tt = b
L+t = 1B
M- th = 1y
syt = W
w+y = X
y+y = y(if niseven)
y = 1(fnisodd)
u+u = v

with n variables. By equivalence (5), the system S is consistent over Z. The
equation u + u = v guarantees that § has infinitely many integer solutions. If an
integer n-tuple (xy, X2, ..., X5, ..., W, y, U, V) solves S, then by equivalence (5),

5= foe) = fov e = £(2-[5] +5) = rom



Corollary. Let f : N\ {0} — N be a recursively enumerable function. Then there
is an algorithm that computes a positive integer m for which an another algorithm

accepts on the input any integer n > m and returns an integer tuple (xi, ..., x,)
for which x| = f(n) and

(6) for each integers y,...,y, the conjunction
(Vie(l,...nf(x=1=y,=1)A
(Vi,j,kE{l,...,n} (xl-+xj:xk:yi+yj:yk))/\

Vi, kefl,....n} (xi-Xx; =X = yi"y; = Y)

implies that x| = y;.

Proof. Let <, denote the order on Z" which ranks the tuples (xi,...,x,) first
according to max(|xyl,...,|x,]) and then lexicographically. The ordered set
(Z",<,) is isomorphic to (N, <). To compute an integer tuple (xi,...,x,), we

solve the system S by performing the brute-force search in the order <,,.
]

If n > 2, then the tuple
n-2 n-3
(xl,...,x,,):(z2 22 ,...,256,16,4,2,1)

has property (6). Unfortunately, we do not know any explicitly given integers
n-2
X1, ..., X, with property (6) and |x;| > 22"
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