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Small systems of Diophantine equations which have
only very large integer solutions

Apoloniusz Tyszka

Abstract. Let f : N \ {0} → N be a recursively enumerable function,
En = {xi = 1, xi + x j = xk, xi · x j = xk : i, j, k ∈ {1, . . . , n}}. We prove that there is
an algorithm that computes a positive integer m for which an another algorithm
accepts on the input any integer n ≥ m and returns a system S ⊆ En such that
S has infinitely many integer solutions and each integer tuple (x1, . . . , xn) that
solves S satisfies x1 = f (n). For each integer n ≥ 12 we construct a system
S ⊆ En such that S has infinitely many integer solutions and they all belong to
Zn \ [−22n−1

, 22n−1
]n.

Key words and phrases: computable upper bound for the heights of integer (ra-
tional) solutions of a Diophantine equation, Davis-Putnam-Robinson-Matiyasevich
theorem, Diophantine equation with a finite number of integer (rational) solutions,
recursively enumerable function.
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This article is a shortened version of the preprint [6]. We present a general
method for constructing small systems of Diophantine equations which have only
very large integer solutions. Let Φn denote the following statement

∀x1, . . . , xn ∈ Z ∃y1, . . . , yn ∈ Z(
22n−1

< |x1| =⇒
(
|x1| < |y1| ∨ . . . ∨ |x1| < |yn|

))
∧(

∀i, j, k ∈ {1, . . . , n} (xi + x j = xk =⇒ yi + y j = yk)
)
∧ (1)

∀i, j, k ∈ {1, . . . , n} (xi · x j = xk =⇒ yi · y j = yk) (2)
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For n ≥ 2, the bound 22n−1
cannot be decreased because for

(x1, . . . , xn) =
(
22n−1

, 22n−2
, 22n−3

, . . . , 256, 16, 4, 2
)

the conjunction of statements (1) and (2) guarantees that

(y1, . . . , yn) = (0, . . . , 0) ∨ (y1, . . . , yn) =
(
22n−1

, 22n−2
, 22n−3

, . . . , 256, 16, 4, 2
)

The statement ∀nΦn has powerful consequences for Diophantine equations,
but is still unproven, see [5]. In particular, it implies that if a Diophantine equation
has only finitely many solutions in integers (non-negative integers, rationals), then
their heights are bounded from above by a computable function of the degree and
the coefficients of the equation. For integer solutions, this conjectural upper bound
can be computed by applying equation (3) and Lemmas 2 and 7.

The statement ∀nΦn is equivalent to the statement ∀nΨn, where Ψn denote the
statement

∀x1, . . . , xn ∈ Z ∃y1, . . . , yn ∈ Z(
22n−1

< |x1| = max
(
|x1|, . . . , |xn|

)
≤ 22n

=⇒
(
|x1| < |y1| ∨ . . . ∨ |x1| < |yn|

))
∧(

∀i, j, k ∈ {1, . . . , n} (xi + x j = xk =⇒ yi + y j = yk)
)
∧

∀i, j, k ∈ {1, . . . , n} (xi · x j = xk =⇒ yi · y j = yk)

In contradistinction to the statements Φn, each statement Ψn can be confirmed by
a brute-force search in a finite amount of time.

The statement
∀n ∀x1, . . . , xn ∈ Z ∃y1, . . . , yn ∈ Z(

22n−1
< |x1| =⇒ |x1| < |y1|

)
∧(

∀i, j, k ∈ {1, . . . , n} (xi + x j = xk =⇒ yi + y j = yk)
)
∧

∀i, j, k ∈ {1, . . . , n} (xi · x j = xk =⇒ yi · y j = yk)

strengthens the statement ∀nΦn but is false, as we will show in the Corollary.

Let

En = {xi = 1, xi + x j = xk, xi · x j = xk : i, j, k ∈ {1, . . . , n}}
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To each system S ⊆ En we assign the system S̃ defined by

(S \ {xi = 1 : i ∈ {1, . . . , n}})∪
{xi · x j = x j : i, j ∈ {1, . . . , n} and the equation xi = 1 belongs to S }

In other words, in order to obtain S̃ we remove from S each equation xi = 1 and
replace it by the following n equations:

xi · x1 = x1

. . .
xi · xn = xn

Lemma 1. For each system S ⊆ En

{(x1, . . . , xn) ∈ Zn : (x1, . . . , xn) solves S̃ } =

{(x1, . . . , xn) ∈ Zn : (x1, . . . , xn) solves S } ∪ {(0, . . . , 0)}

Lemma 2. The statement Φn can be equivalently stated thus: if a system S ⊆ En

has only finitely many solutions in integers x1, . . . , xn, then each such solution
(x1, . . . , xn) satisfies |x1|, . . . , |xn| ≤ 22n−1

.

Proof. It follows from Lemma 1. �

Nevertheless, for each integer n ≥ 12 there exists a system S ⊆ En which has
infinitely many integer solutions and they all belong to Zn \ [−22n−1

, 22n−1
]n. We

will prove it in Theorem 1. First we need few lemmas.

Lemma 3. If a positive integer n is odd and a pair (x, y) of positive integers solves
the negative Pell equation x2 − dy2 = −1, then the pair

(
x + y

√
d
)n

+
(
x − y

√
d
)n

2
,

(
x + y

√
d
)n
−

(
x − y

√
d
)n

2
√

d


consists of positive integers and solves the equation x2 − dy2 = −1.

Lemma 4. The pair (2, 1) solves the equation x2 − 5y2 = −1.

Lemma 5. If a pair (x, y) solves the equation x2 − 5y2 = −1, then the pair
(9x + 20y, 4x + 9y) solves this equation too.
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Lemma 6. ([1, p. 141, Theorem 3.4.1]) Lemmas 4 and 5 allow us to compute all
positive integer solutions to x2 − 5y2 = −1.

Theorem 1. For each integer n ≥ 12 there exists a system S ⊆ En such that S
has infinitely many integer solutions and they all belong to Zn \ [−22n−1

, 22n−1
]n.

Proof. By Lemmas 4–6, the equation u2 − 5v2 = −1 has infinitely many solutions
in positive integers and all these solutions can be simply computed. For a positive
integer n, let (u(n), v(n)) denote the n-th solution to u2 − 5v2 = −1. We define S as

x1 = 1 x1 + x1 = x2 x2 + x2 = x3 x1 + x3 = x4

x4 · x4 = x5 x5 · x5 = x6 x6 · x7 = x8 x8 · x8 = x9

x10 · x10 = x11 x11 + x1 = x12 x4 · x9 = x12

x12 · x12 = x13 x13 · x13 = x14 . . . xn−1 · xn−1 = xn

The first 11 equations of S equivalently expresses that x2
10 − 5 · x2

8 = −1 and 625
divides x8. The equation x2

10 − 59 · x2
7 = −1 expresses the same fact. Execution of

the following MuPAD code

x:=2:
y:=1:
for n from 2 to 313 do
u:=9*x+20*y:
v:=4*x+9*y:
if igcd(v,625)=625 then print(n) end_if:
x:=u:
y:=v:
end_for:
float(u^2+1);
float(2^(2^(12-1)));

returns only n = 313. Therefore, in the domain of positive integers, the minimal

solution to x2
10 − 59 · x2

7 = −1 is given by the pair
(
x10 = u(313), x7 =

v(313)
625

)
.

Hence, if an integer tuple (x1, . . . , xn) solves S , then |x8| ≥ v(313) and

x12 = x2
10 + 1 ≥ u(313)2 + 1 > 2212−1

The final inequality comes from the execution of the last two instructions
of the code, as they display the numbers 1.263545677e783 and
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3.231700607e616. Applying induction, we get xn > 22n−1
. By Lemma 3

(or by [8, p. 58, Theorem 1.3.6]), the equation x2
10 − 59 · x2

7 = −1 has infinitely
many integer solutions. This conclusion transfers to the system S .

�

J. C. Lagarias studied the equation x2 − dy2 = −1 for d = 52n+1, where
n = 0, 1, 2, 3, . . .. His theorem says that for these values of d, the least integer
solution grows exponentially with d, see [3, Appendix A].

The next theorem generalizes Theorem 1. But first we need Lemma 7 together
with introductory matter.

For a Diophantine equation D(x1, . . . , xp) = 0, let M denote the maximum
of the absolute values of its coefficients. Let T denote the family of all polyno-
mials W(x1, . . . , xp) ∈ Z[x1, . . . , xp] whose all coefficients belong to the interval
[−M,M] and deg(W, xi) ≤ di = deg(D, xi) for each i ∈ {1, . . . , p}. Here we con-
sider the degrees of W(x1, . . . , xp) and D(x1, . . . , xp) with respect to the variable xi.
It is easy to check that

card(T ) = (2M + 1)(d1 + 1) · . . . · (dp + 1) (3)

To each polynomial that belongs to T \ {x1, . . . , xp} we assign a new vari-
able xi with i ∈ {p + 1, . . . , card(T )}. Then, D(x1, . . . , xp) = xq for some
q ∈ {1, . . . , card(T )}. LetH denote the family of all equations of the form

xi = 1, xi + x j = xk, xi · x j = xk (i, j, k ∈ {1, . . . , card(T )})

which are polynomial identities in Z[x1, . . . , xp]. If some variable xm is assigned to
a polynomial W(x1, . . . , xp) ∈ T , then for each ring K extending Z the system H
implies W(x1, . . . , xp) = xm. This observation proves the following Lemma 7.

Lemma 7. The system H ∪ {xq + xq = xq} is algorithmically determinable. For
each ring K extending Z, the equation D(x1, . . . , xp) = 0 is equivalent to the system
H ∪ {xq + xq = xq} ⊆ Ecard(T ). Formally, this equivalence can be written as

∀x1 ∈ K . . .∀xp ∈ K
(
D(x1, . . . , xp) = 0⇐⇒ ∃xp+1, . . . , xcard(T ) ∈ K

(x1, . . . , xp, xp+1, . . . , xcard(T )) solves the systemH ∪ {xq + xq = xq}
)

For each ring K extending Z, the equation D(x1, . . . , xp) = 0 has only finitely many
solutions in K if and only if the system H ∪ {xq + xq = xq} has only finitely many
solutions in K.
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To see how Lemma 7 works in a concrete case, let us take D(x1, x2) = x1 ·x2−1.
Then, p = 2, M = 1, d1 = d2 = 1, card(T ) = (2 · 1 + 1)(1+1)·(1+1) = 34 = 81. The
following MuPAD code

p:=2:
M:=1:
d_1:=1: \ p
d_2:=1: / lines
mo:=[]:
for i1 from 0 to d_1 do \ p
for i2 from 0 to d_2 do / lines
mo:=append(mo,x1^(i1)*x2^(i2)): (p variables)
end_for: \ p
end_for: / lines
T:=[x1,x2]: (p variables)
for j1 from -M to M do \
for j2 from -M to M do \ (d_1+1) ... (d_p+1)
for j3 from -M to M do / lines
for j4 from -M to M do /
if (j1*mo[1]+j2*mo[2]+j3*mo[3]+j4*mo[4]<>x1) and
(j1*mo[1]+j2*mo[2]+j3*mo[3]+j4*mo[4]<>x2)
then T:=append(T,j1*mo[1]+j2*mo[2]+j3*mo[3]+j4*mo[4]) end_if:
end_for: \
end_for: \ (d_1+1) ... (d_p+1)
end_for: / lines
end_for: /
print(T):
for p from 1 to nops(T) do
if T[p]=1 then print(p) end_if:
end_for:
for q from 1 to nops(T) do
if T[q]=x1*x2-1 then print(q) end_if:
end_for:
H1:=[]:
H2:=[]:
for i from 1 to nops(T) do
for j from 1 to nops(T) do
for k from 1 to nops(T) do
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if T[i]+T[j]=T[k] then H1:=append(H1,[i,j,k]) end_if:
end_for:
end_for:
end_for:
print(nops(H1)):
print(H1):
for i from 1 to nops(T) do
for j from 1 to nops(T) do
for k from 1 to nops(T) do
if T[i]*T[j]=T[k] then H2:=append(H2,[i,j,k]) end_if:
end_for:
end_for:
end_for:
print(nops(H2)):
print(H2):

first displays the list T which enumerates the elements of T starting from x1

and x2. The code finds that T [68] = 1 and T [17] = x1 · x2 − 1. Next, the
code initializes empty lists H1 and H2. In H1, it stores all triplets [i, j, k] with
T [i] + T [ j] = T [k]. In H2, it stores all triplets [i, j, k] with T [i] · T [ j] = T [k]. The
following system 

x68 = 1
xi + x j = xk ([i, j, k] ∈ H1)
xi · x j = xk ([i, j, k] ∈ H2)

x17 + x17 = x17

consists of 1 + 2401 + 485 + 1 equations and is equivalent to x1 · x2 − 1 = 0.

The Davis-Putnam-Robinson-Matiyasevich theorem states that every recur-
sively enumerable setM ⊆ Nn has a Diophantine representation, that is

(a1, . . . , an) ∈ M ⇐⇒ ∃x1, . . . , xm ∈ N W(a1, . . . , an, x1, . . . , xm) = 0 (4)

for some polynomial W with integer coefficients, see [4] and [2]. The representa-
tion (4) is algorithmically determinable, if we know a Turing machine M such that,
for all (a1, . . . , an) ∈ Nn, M halts on (a1, . . . , an) if and only if (a1, . . . , an) ∈ M, see
[4] and [2].
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Theorem 2. Let f : N\{0} → N be a recursively enumerable function. Then there
is an algorithm that computes a positive integer m for which an another algorithm
accepts on the input any integer n ≥ m and returns a system S ⊆ En such that
S has infinitely many integer solutions and each integer tuple (x1, . . . , xn) that
solves S satisfies x1 = f (n).

Proof. By the Davis-Putnam-Robinson-Matiyasevich theorem and Lemma 7, there
is an integer s ≥ 3 such that for each integers x1, x2

x1 = f (x2)⇐⇒ ∃x3, . . . , xs ∈ Z Ψ(x1, x2, . . . , xs) (5)

where the formula Ψ(x1, x2, . . . , xs) is algorithmically determined as a conjunction
of formulae of the form xi = 1, xi + x j = xk, xi · x j = xk (i, j, k ∈ {1, . . . , s}). Let
m = 8 + 2s, and let [·] denote the integer part function. For each integer n ≥ m,

n −
[n
2

]
− 4 − s ≥ m −

[m
2

]
− 4 − s ≥ m −

m
2
− 4 − s = 0

Let S denote the following system

all equations occurring in Ψ(x1, x2, . . . , xs)
n −

[
n
2

]
− 4 − s equations of the form zi = 1

t1 = 1
t1 + t1 = t2

t2 + t1 = t3

. . .
t[ n

2 ]−1 + t1 = t[ n
2 ]

t[ n
2 ] + t[ n

2 ] = w
w + y = x2

y + y = y (if n is even)
y = 1 (if n is odd)

u + u = v

with n variables. By equivalence (5), the system S is consistent over Z. The
equation u + u = v guarantees that S has infinitely many integer solutions. If an
integer n-tuple (x1, x2, . . . , xs, . . . ,w, y, u, v) solves S , then by equivalence (5),

x1 = f (x2) = f (w + y) = f
(
2 ·

[n
2

]
+ y

)
= f (n)

�
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Corollary. Let f : N \ {0} → N be a recursively enumerable function. Then there
is an algorithm that computes a positive integer m for which an another algorithm
accepts on the input any integer n ≥ m and returns an integer tuple (x1, . . . , xn)
for which x1 = f (n) and

(6) for each integers y1, . . . , yn the conjunction(
∀i ∈ {1, . . . , n} (xi = 1 =⇒ yi = 1)

)
∧(

∀i, j, k ∈ {1, . . . , n} (xi + x j = xk =⇒ yi + y j = yk)
)
∧

∀i, j, k ∈ {1, . . . , n} (xi · x j = xk =⇒ yi · y j = yk)

implies that x1 = y1.

Proof. Let ≤n denote the order on Zn which ranks the tuples (x1, . . . , xn) first
according to max(|x1|, . . . , |xn|) and then lexicographically. The ordered set
(Zn,≤n) is isomorphic to (N,≤). To compute an integer tuple (x1, . . . , xn), we
solve the system S by performing the brute-force search in the order ≤n.

�

If n ≥ 2, then the tuple

(x1, . . . , xn) =

(
22n−2

, 22n−3
, . . . , 256, 16, 4, 2, 1

)
has property (6). Unfortunately, we do not know any explicitly given integers
x1, . . . , xn with property (6) and |x1| > 22n−2

.
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