Apoloniusz TYSZKA

Small systems of Diophantine equations which have only very large integer solutions

Preprint Nr MD 052
(otrzymany dnia 5 V 2011)

Kraków 2011

Redaktorami serii preprintów Matematyka Dyskretna są: Wit FORYŚ, prowadzący seminarium Stowa, stowa, stowa... w Instytucie Informatyki UJ
oraz
Mariusz WOŹNIAK, prowadzący seminarium Matematyka Dyskretna - Teoria Grafów na Wydziale Matematyki Stosowanej AGH.

Small systems of Diophantine equations which have only very large integer solutions

Apoloniusz Tyszka

Abstract

Let $f: \mathbb{N} \backslash\{0\} \rightarrow \mathbb{N}$ be a recursively enumerable function, $E_{n}=\left\{x_{i}=1, x_{i}+x_{j}=x_{k}, x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}$. We prove that there is an algorithm that computes a positive integer m for which an another algorithm accepts on the input any integer $n \geq m$ and returns a system $S \subseteq E_{n}$ such that S has infinitely many integer solutions and each integer tuple $\left(x_{1}, \ldots, x_{n}\right)$ that solves S satisfies $x_{1}=f(n)$. For each integer $n \geq 12$ we construct a system $S \subseteq E_{n}$ such that S has infinitely many integer solutions and they all belong to $\mathbb{Z}^{n} \backslash\left[-2^{2^{n-1}}, 2^{2^{n-1}}\right]^{n}$.

Key words and phrases: computable upper bound for the heights of integer (rational) solutions of a Diophantine equation, Davis-Putnam-Robinson-Matiyasevich theorem, Diophantine equation with a finite number of integer (rational) solutions, recursively enumerable function.

2010 Mathematics Subject Classification: 03D25, 11D99, 11U99.

This article is a shortened version of the preprint [6]. We present a general method for constructing small systems of Diophantine equations which have only very large integer solutions. Let Φ_{n} denote the following statement

$$
\begin{gather*}
\forall x_{1}, \ldots, x_{n} \in \mathbb{Z} \exists y_{1}, \ldots, y_{n} \in \mathbb{Z} \\
\left(2^{2^{n-1}}<\left|x_{1}\right| \Longrightarrow\left(\left|x_{1}\right|<\left|y_{1}\right| \vee \ldots \vee\left|x_{1}\right|<\left|y_{n}\right|\right)\right) \wedge \\
\left(\forall i, j, k \in\{1, \ldots, n\}\left(x_{i}+x_{j}=x_{k} \Longrightarrow y_{i}+y_{j}=y_{k}\right)\right) \wedge \tag{1}\\
\forall i, j, k \in\{1, \ldots, n\}\left(x_{i} \cdot x_{j}=x_{k} \Longrightarrow y_{i} \cdot y_{j}=y_{k}\right) \tag{2}
\end{gather*}
$$

For $n \geq 2$, the bound $2^{2^{n-1}}$ cannot be decreased because for

$$
\left(x_{1}, \ldots, x_{n}\right)=\left(2^{2^{n-1}}, 2^{2^{n-2}}, 2^{2^{n-3}}, \ldots, 256,16,4,2\right)
$$

the conjunction of statements (1) and (2) guarantees that

$$
\left(y_{1}, \ldots, y_{n}\right)=(0, \ldots, 0) \vee\left(y_{1}, \ldots, y_{n}\right)=\left(2^{2^{n-1}}, 2^{2^{n-2}}, 2^{2^{n-3}}, \ldots, 256,16,4,2\right)
$$

The statement $\forall n \Phi_{n}$ has powerful consequences for Diophantine equations, but is still unproven, see [5]. In particular, it implies that if a Diophantine equation has only finitely many solutions in integers (non-negative integers, rationals), then their heights are bounded from above by a computable function of the degree and the coefficients of the equation. For integer solutions, this conjectural upper bound can be computed by applying equation (3) and Lemmas 2 and 7 .

The statement $\forall n \Phi_{n}$ is equivalent to the statement $\forall n \Psi_{n}$, where Ψ_{n} denote the statement

$$
\begin{gathered}
\forall x_{1}, \ldots, x_{n} \in \mathbb{Z} \exists y_{1}, \ldots, y_{n} \in \mathbb{Z} \\
\left(2^{2^{n-1}}<\left|x_{1}\right|=\max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right) \leq 2^{2^{n}} \Longrightarrow\left(\left|x_{1}\right|<\left|y_{1}\right| \vee \ldots \vee\left|x_{1}\right|<\left|y_{n}\right|\right)\right) \wedge \\
\left(\forall i, j, k \in\{1, \ldots, n\}\left(x_{i}+x_{j}=x_{k} \Longrightarrow y_{i}+y_{j}=y_{k}\right)\right) \wedge \\
\forall i, j, k \in\{1, \ldots, n\}\left(x_{i} \cdot x_{j}=x_{k} \Longrightarrow y_{i} \cdot y_{j}=y_{k}\right)
\end{gathered}
$$

In contradistinction to the statements Φ_{n}, each statement Ψ_{n} can be confirmed by a brute-force search in a finite amount of time.

The statement

$$
\begin{gathered}
\forall n \forall x_{1}, \ldots, x_{n} \in \mathbb{Z} \exists y_{1}, \ldots, y_{n} \in \mathbb{Z} \\
\left(2^{2^{n-1}}<\left|x_{1}\right| \Longrightarrow\left|x_{1}\right|<\left|y_{1}\right|\right) \wedge \\
\left(\forall i, j, k \in\{1, \ldots, n\}\left(x_{i}+x_{j}=x_{k} \Longrightarrow y_{i}+y_{j}=y_{k}\right)\right) \wedge \\
\forall i, j, k \in\{1, \ldots, n\}\left(x_{i} \cdot x_{j}=x_{k} \Longrightarrow y_{i} \cdot y_{j}=y_{k}\right)
\end{gathered}
$$

strengthens the statement $\forall n \Phi_{n}$ but is false, as we will show in the Corollary.
Let

$$
E_{n}=\left\{x_{i}=1, x_{i}+x_{j}=x_{k}, x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}
$$

To each system $S \subseteq E_{n}$ we assign the system \widetilde{S} defined by

$$
\begin{gathered}
\left(S \backslash\left\{x_{i}=1: i \in\{1, \ldots, n\}\right\}\right) \cup \\
\left\{x_{i} \cdot x_{j}=x_{j}: i, j \in\{1, \ldots, n\} \text { and the equation } x_{i}=1 \text { belongs to } S\right\}
\end{gathered}
$$

In other words, in order to obtain \widetilde{S} we remove from S each equation $x_{i}=1$ and replace it by the following n equations:

$$
\begin{aligned}
x_{i} \cdot x_{1} & =x_{1} \\
& \ldots \\
x_{i} \cdot x_{n} & =x_{n}
\end{aligned}
$$

Lemma 1. For each system $S \subseteq E_{n}$

$$
\begin{aligned}
&\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}:\left(x_{1}, \ldots, x_{n}\right) \text { solves } \widetilde{S}\right\}= \\
&\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}:\left(x_{1}, \ldots, x_{n}\right) \text { solves } S\right\} \cup\{(0, \ldots, 0)\}
\end{aligned}
$$

Lemma 2. The statement Φ_{n} can be equivalently stated thus: if a system $S \subseteq E_{n}$ has only finitely many solutions in integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $\left|x_{1}\right|, \ldots,\left|x_{n}\right| \leq 2^{2^{n-1}}$.

Proof. It follows from Lemma 1 .
Nevertheless, for each integer $n \geq 12$ there exists a system $S \subseteq E_{n}$ which has infinitely many integer solutions and they all belong to $\mathbb{Z}^{n} \backslash\left[-2^{2^{n-1}}, 2^{2^{n-1}}\right]^{n}$. We will prove it in Theorem 11. First we need few lemmas.

Lemma 3. If a positive integer n is odd and a pair (x, y) of positive integers solves the negative Pell equation $x^{2}-d y^{2}=-1$, then the pair

$$
\left(\frac{(x+y \sqrt{d})^{n}+(x-y \sqrt{d})^{n}}{2}, \frac{(x+y \sqrt{d})^{n}-(x-y \sqrt{d})^{n}}{2 \sqrt{d}}\right)
$$

consists of positive integers and solves the equation $x^{2}-d y^{2}=-1$.
Lemma 4. The pair $(2,1)$ solves the equation $x^{2}-5 y^{2}=-1$.
Lemma 5. If a pair (x, y) solves the equation $x^{2}-5 y^{2}=-1$, then the pair $(9 x+20 y, 4 x+9 y)$ solves this equation too.

Lemma 6. ([]] p. 141, Theorem 3.4.1]) Lemmas 4 and 5 allow us to compute all positive integer solutions to $x^{2}-5 y^{2}=-1$.

Theorem 1. For each integer $n \geq 12$ there exists a system $S \subseteq E_{n}$ such that S has infinitely many integer solutions and they all belong to $\mathbb{Z}^{n} \backslash\left[-2^{2^{n-1}}, 2^{2^{n-1}}\right]^{n}$.

Proof. By Lemmas 4 6, the equation $u^{2}-5 v^{2}=-1$ has infinitely many solutions in positive integers and all these solutions can be simply computed. For a positive integer n, let $(u(n), v(n))$ denote the n-th solution to $u^{2}-5 v^{2}=-1$. We define S as

$$
\begin{aligned}
& x_{1}=1 \quad x_{1}+x_{1}=x_{2} \quad x_{2}+x_{2}=x_{3} \quad x_{1}+x_{3}=x_{4} \\
& x_{4} \cdot x_{4}=x_{5} \quad x_{5} \cdot x_{5}=x_{6} \quad x_{6} \cdot x_{7}=x_{8} \quad x_{8} \cdot x_{8}=x_{9} \\
& x_{10} \cdot x_{10}=x_{11} \quad x_{11}+x_{1}=x_{12} \quad x_{4} \cdot x_{9}=x_{12} \\
& x_{12} \cdot x_{12}=x_{13} \quad x_{13} \cdot x_{13}=x_{14} \quad \ldots \quad x_{n-1} \cdot x_{n-1}=x_{n}
\end{aligned}
$$

The first 11 equations of S equivalently expresses that $x_{10}^{2}-5 \cdot x_{8}^{2}=-1$ and 625 divides x_{8}. The equation $x_{10}^{2}-5^{9} \cdot x_{7}^{2}=-1$ expresses the same fact. Execution of the following MuPAD code

```
x:=2:
y:=1:
for n from 2 to 313 do
u:=9*x+20*y:
v:=4*x+9*y:
if igcd(v,625)=625 then print(n) end_if:
x:=u:
y:=v:
end_for:
float(u^2+1);
float(2^(2^(12-1)));
```

returns only $n=313$. Therefore, in the domain of positive integers, the minimal solution to $x_{10}^{2}-5^{9} \cdot x_{7}^{2}=-1$ is given by the pair $\left(x_{10}=u(313), x_{7}=\frac{v(313)}{625}\right)$. Hence, if an integer tuple $\left(x_{1}, \ldots, x_{n}\right)$ solves S, then $\left|x_{8}\right| \geq v(313)$ and

$$
x_{12}=x_{10}^{2}+1 \geq u(313)^{2}+1>2^{2^{12-1}}
$$

The final inequality comes from the execution of the last two instructions of the code, as they display the numbers $1.263545677 e 783$ and
3.231700607e616. Applying induction, we get $x_{n}>2^{2^{n-1}}$. By Lemma 3 (or by [8, p. 58, Theorem 1.3.6]), the equation $x_{10}^{2}-5^{9} \cdot x_{7}^{2}=-1$ has infinitely many integer solutions. This conclusion transfers to the system S.
J. C. Lagarias studied the equation $x^{2}-d y^{2}=-1$ for $d=5^{2 n+1}$, where $n=0,1,2,3, \ldots$. His theorem says that for these values of d, the least integer solution grows exponentially with d, see [3, Appendix A].

The next theorem generalizes Theorem 1. But first we need Lemma 7 together with introductory matter.

For a Diophantine equation $D\left(x_{1}, \ldots, x_{p}\right)=0$, let M denote the maximum of the absolute values of its coefficients. Let \mathcal{T} denote the family of all polynomials $W\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{p}\right]$ whose all coefficients belong to the interval $[-M, M]$ and $\operatorname{deg}\left(W, x_{i}\right) \leq d_{i}=\operatorname{deg}\left(D, x_{i}\right)$ for each $i \in\{1, \ldots, p\}$. Here we consider the degrees of $W\left(x_{1}, \ldots, x_{p}\right)$ and $D\left(x_{1}, \ldots, x_{p}\right)$ with respect to the variable x_{i}. It is easy to check that

$$
\begin{equation*}
\operatorname{card}(\mathcal{T})=(2 M+1)^{\left(d_{1}+1\right) \cdot \ldots \cdot\left(d_{p}+1\right)} \tag{3}
\end{equation*}
$$

To each polynomial that belongs to $\mathcal{T} \backslash\left\{x_{1}, \ldots, x_{p}\right\}$ we assign a new variable x_{i} with $i \in\{p+1, \ldots, \operatorname{card}(\mathcal{T})\}$. Then, $D\left(x_{1}, \ldots, x_{p}\right)=x_{q}$ for some $q \in\{1, \ldots, \operatorname{card}(\mathcal{T})\}$. Let \mathcal{H} denote the family of all equations of the form

$$
x_{i}=1, x_{i}+x_{j}=x_{k}, x_{i} \cdot x_{j}=x_{k}(i, j, k \in\{1, \ldots, \operatorname{card}(\mathcal{T})\})
$$

which are polynomial identities in $\mathbb{Z}\left[x_{1}, \ldots, x_{p}\right]$. If some variable x_{m} is assigned to a polynomial $W\left(x_{1}, \ldots, x_{p}\right) \in \mathcal{T}$, then for each ring \boldsymbol{K} extending \mathbb{Z} the system \mathcal{H} implies $W\left(x_{1}, \ldots, x_{p}\right)=x_{m}$. This observation proves the following Lemma 7 .

Lemma 7. The system $\mathcal{H} \cup\left\{x_{q}+x_{q}=x_{q}\right\}$ is algorithmically determinable. For each ring \boldsymbol{K} extending \mathbb{Z}, the equation $D\left(x_{1}, \ldots, x_{p}\right)=0$ is equivalent to the system $\mathcal{H} \cup\left\{x_{q}+x_{q}=x_{q}\right\} \subseteq E_{\operatorname{card}(\mathcal{T})}$. Formally, this equivalence can be written as

$$
\begin{aligned}
& \forall x_{1} \in \boldsymbol{K} \ldots \forall x_{p} \in \boldsymbol{K}\left(D\left(x_{1}, \ldots, x_{p}\right)=0 \Longleftrightarrow \exists x_{p+1}, \ldots, x_{\operatorname{card}(\mathcal{T})} \in \boldsymbol{K}\right. \\
& \left.\left(x_{1}, \ldots, x_{p}, x_{p+1}, \ldots, x_{\operatorname{card}(\mathcal{T})}\right) \text { solves the system } \mathcal{H} \cup\left\{x_{q}+x_{q}=x_{q}\right\}\right)
\end{aligned}
$$

For each ring \boldsymbol{K} extending \mathbb{Z}, the equation $D\left(x_{1}, \ldots, x_{p}\right)=0$ has only finitely many solutions in \boldsymbol{K} if and only if the system $\mathcal{H} \cup\left\{x_{q}+x_{q}=x_{q}\right\}$ has only finitely many solutions in \boldsymbol{K}.

To see how Lemma 7 works in a concrete case, let us take $D\left(x_{1}, x_{2}\right)=x_{1} \cdot x_{2}-1$. Then, $p=2, M=1, d_{1}=d_{2}=1, \operatorname{card}(\mathcal{T})=(2 \cdot 1+1)^{(1+1) \cdot(1+1)}=3^{4}=81$. The following MuPAD code

```
p:=2:
M:=1:
d_1:=1: \ p
d_2:=1: / lines
mo:=[]:
for i1 from 0 to d_1 do \ p
for i2 from 0 to d_2 do / lines
mo:=append(mo,x1^(i1)*x2^(i2)): (p variables)
end_for: \ p
end_for: / lines
T:=[x1,x2]: (p variables)
for j1 from -M to M do \
for j2 from -M to M do \ (d_1+1) ... (d_p+1)
for j3 from -M to M do / lines
for j4 from -M to M do /
if (j1*mo[1]+j2*mo[2]+j3*mo[3]+j4*mo[4]<>x1) and
(j1*mo[1]+j2*mo[2]+j3*mo[3]+j4*mo[4]<>x2)
then T:=append(T,j1*mo[1]+j2*mo[2]+j3*mo[3]+j4*mo[4]) end_if:
end_for: \
end_for: \ (d_1+1) ... (d_p+1)
end_for: / lines
end_for: /
print(T):
for p from 1 to nops(T) do
if T[p]=1 then print(p) end_if:
end_for:
for q from 1 to nops(T) do
if T[q]=x1*x2-1 then print(q) end_if:
end_for:
H1:=[]:
H2:=[]:
for i from 1 to nops(T) do
for j from 1 to nops(T) do
for k from 1 to nops(T) do
```

```
if T[i]+T[j]=T[k] then H1:=append(H1,[i,j,k]) end_if:
end_for:
end_for:
end_for:
print(nops(H1)):
print(H1):
for i from 1 to nops(T) do
for j from 1 to nops(T) do
for k from 1 to nops(T) do
if T[i]*T[j]=T[k] then H2:=append(H2,[i,j,k]) end_if:
end_for:
end_for:
end_for:
print(nops(H2)):
print(H2):
```

first displays the list T which enumerates the elements of \mathcal{T} starting from x_{1} and x_{2}. The code finds that $T[68]=1$ and $T[17]=x_{1} \cdot x_{2}-1$. Next, the code initializes empty lists $H 1$ and $H 2$. In $H 1$, it stores all triplets $[i, j, k]$ with $T[i]+T[j]=T[k]$. In $H 2$, it stores all triplets $[i, j, k]$ with $T[i] \cdot T[j]=T[k]$. The following system

$$
\left\{\begin{aligned}
x_{68} & =1 \\
x_{i}+x_{j} & =x_{k} \quad([i, j, k] \in H 1) \\
x_{i} \cdot x_{j} & =x_{k} \quad([i, j, k] \in H 2) \\
x_{17}+x_{17} & =x_{17}
\end{aligned}\right.
$$

consists of $1+2401+485+1$ equations and is equivalent to $x_{1} \cdot x_{2}-1=0$.
The Davis-Putnam-Robinson-Matiyasevich theorem states that every recursively enumerable set $\mathcal{M} \subseteq \mathbb{N}^{n}$ has a Diophantine representation, that is

$$
\begin{equation*}
\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{M} \Longleftrightarrow \exists x_{1}, \ldots, x_{m} \in \mathbb{N} W\left(a_{1}, \ldots, a_{n}, x_{1}, \ldots, x_{m}\right)=0 \tag{4}
\end{equation*}
$$

for some polynomial W with integer coefficients, see [4] and [2]. The representation (4) is algorithmically determinable, if we know a Turing machine M such that, for all $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}, M$ halts on $\left(a_{1}, \ldots, a_{n}\right)$ if and only if $\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{M}$, see [4] and [2].

Theorem 2. Let $f: \mathbb{N} \backslash\{0\} \rightarrow \mathbb{N}$ be a recursively enumerable function. Then there is an algorithm that computes a positive integer m for which an another algorithm accepts on the input any integer $n \geq m$ and returns a system $S \subseteq E_{n}$ such that S has infinitely many integer solutions and each integer tuple $\left(x_{1}, \ldots, x_{n}\right)$ that solves S satisfies $x_{1}=f(n)$.

Proof. By the Davis-Putnam-Robinson-Matiyasevich theorem and Lemma7, there is an integer $s \geq 3$ such that for each integers x_{1}, x_{2}

$$
\begin{equation*}
x_{1}=f\left(x_{2}\right) \Longleftrightarrow \exists x_{3}, \ldots, x_{s} \in \mathbb{Z} \Psi\left(x_{1}, x_{2}, \ldots, x_{s}\right) \tag{5}
\end{equation*}
$$

where the formula $\Psi\left(x_{1}, x_{2}, \ldots, x_{s}\right)$ is algorithmically determined as a conjunction of formulae of the form $x_{i}=1, x_{i}+x_{j}=x_{k}, x_{i} \cdot x_{j}=x_{k}(i, j, k \in\{1, \ldots, s\})$. Let $m=8+2 s$, and let $[\cdot]$ denote the integer part function. For each integer $n \geq m$,

$$
n-\left[\frac{n}{2}\right]-4-s \geq m-\left[\frac{m}{2}\right]-4-s \geq m-\frac{m}{2}-4-s=0
$$

Let S denote the following system

$$
\left\{\begin{aligned}
\text { all equations occurring in } \Psi\left(x_{1}, x_{2}, \ldots, x_{s}\right) & \\
n-\left[\frac{n}{2}\right]-4-s \text { equations of the form } z_{i}=1 & \\
t_{1} & =1 \\
t_{1}+t_{1} & =t_{2} \\
t_{2}+t_{1} & =t_{3} \\
& \cdots \\
t_{\left[\frac{n}{2}\right]-1}+t_{1} & =t_{\left[\frac{n}{2}\right]} \\
t_{\left[\frac{n}{2}\right]}+t_{\left[\frac{n}{2}\right]} & =w \\
w+y & =x_{2} \\
y+y & =y \text { (if } n \text { is even) } \\
y & =1 \text { (if } n \text { is odd) } \\
u+u & =v
\end{aligned}\right.
$$

with n variables. By equivalence (5), the system S is consistent over \mathbb{Z}. The equation $u+u=v$ guarantees that S has infinitely many integer solutions. If an integer n-tuple ($x_{1}, x_{2}, \ldots, x_{s}, \ldots, w, y, u, v$) solves S, then by equivalence (5),

$$
x_{1}=f\left(x_{2}\right)=f(w+y)=f\left(2 \cdot\left[\frac{n}{2}\right]+y\right)=f(n)
$$

Corollary. Let $f: \mathbb{N} \backslash\{0\} \rightarrow \mathbb{N}$ be a recursively enumerable function. Then there is an algorithm that computes a positive integer m for which an another algorithm accepts on the input any integer $n \geq m$ and returns an integer tuple $\left(x_{1}, \ldots, x_{n}\right)$ for which $x_{1}=f(n)$ and
(6) for each integers y_{1}, \ldots, y_{n} the conjunction

$$
\begin{gathered}
\left(\forall i \in\{1, \ldots, n\}\left(x_{i}=1 \Longrightarrow y_{i}=1\right)\right) \wedge \\
\left(\forall i, j, k \in\{1, \ldots, n\}\left(x_{i}+x_{j}=x_{k} \Longrightarrow y_{i}+y_{j}=y_{k}\right)\right) \wedge \\
\forall i, j, k \in\{1, \ldots, n\}\left(x_{i} \cdot x_{j}=x_{k} \Longrightarrow y_{i} \cdot y_{j}=y_{k}\right)
\end{gathered}
$$

implies that $x_{1}=y_{1}$.
Proof. Let \leq_{n} denote the order on \mathbb{Z}^{n} which ranks the tuples (x_{1}, \ldots, x_{n}) first according to $\max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$ and then lexicographically. The ordered set (\mathbb{Z}^{n}, \leq_{n}) is isomorphic to (\mathbb{N}, \leq). To compute an integer tuple $\left(x_{1}, \ldots, x_{n}\right)$, we solve the system S by performing the brute-force search in the order \leq_{n}.

If $n \geq 2$, then the tuple

$$
\left(x_{1}, \ldots, x_{n}\right)=\left(2^{2^{n-2}}, 2^{2^{n-3}}, \ldots, 256,16,4,2,1\right)
$$

has property (6). Unfortunately, we do not know any explicitly given integers x_{1}, \ldots, x_{n} with property (6) and $\left|x_{1}\right|>2^{2^{n-2}}$.

References

[1] T. Andreescu, D. Andrica, I. Cucurezeanu, An introduction to Diophantine equations, A problem-based approach, Birkhäuser, Basel, 2010.
[2] L. B. Kuijer, Creating a diophantine description of a r.e. set and on the complexity of such a description, MSc thesis, Faculty of Mathematics and Natural Sciences, University of Groningen, 2010, http://scripties.fwn.eldoc. ub.rug.nl.
[3] J. C. Lagarias, On the computational complexity of determining the solvability or unsolvability of the equation $X^{2}-D Y^{2}=-1$, Trans. Amer. Math. Soc. 260 (1980), no. 2, 485-508.
[4] Yu. Matiyasevich, Hilbert's tenth problem, MIT Press, Cambridge, MA, 1993.
[5] A. Tyszka, A hypothetical upper bound for the solutions of a Diophantine equation with a finite number of solutions, http://arxiv.org/abs/0901. 2093.
[6] A. Tyszka, Small systems of Diophantine equations which have only very large integer solutions, http://arxiv.org/abs/1102.4122.
[7] A. Tyszka, Two conjectures on the arithmetic in \mathbb{R} and \mathbb{C}, MLQ Math. Log. Q. 56 (2010), no. 2, 175-184.
[8] S. Y. Yan, Number theory for computing, 2nd ed., Springer, Berlin, 2002.
Apoloniusz Tyszka
University of Agriculture
Faculty of Production and Power Engineering
Balicka 116B, 30-149 Kraków, Poland
E-mail address: rttyszka@cyf-kr.edu.pl

