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Abstract

In this paper, we prove that the configuration space Fn(M) of n particles in a compact

connected PL-manifold M with nonempty boundary ∂M is homotopy equivalent to the configu-

ration space Fn(IntM) where IntM = M \ ∂M . We formulate some generalization of this result

for polyhedra. The similar results has been obtained independently for topological manifolds

by C.Zapata in [11], by using somewhat different techniques.

We also adress the question of whether a compact PL-manifold M can be approximated

up to homotopy type by discrete configuration spaces defined combinatorially via a simplicial

subdivision of M .

1 Introduction

Let X be a topological space and Xk its k-fold cartesian product, k ≥ 2. Define the (complete)

diagonal D of Xk as follows: D = {(x1, . . . , xk) ∈ Xk|xi = xj for some i 6= j}.
For a given topological space X denote by Fk(X) the space Xk \ D, the configuration space

of k particles in X without collisions. The topology of classical classification spaces Fk(R
n) has

been extensively studied by many authors (see for example, [6, 8] for backgrounds). A fundamental

work on this topic is the monograph of Falell and Husseini [7], in which the case of sphere X = Sm

is also treated. The homology structure of Fk(R
n) was described, for example, in [3]. It is also

known that configuration spaces are not homotopy invariant even for closed manifolds (see [10]).

In this paper, we will show that if the homotopy equivalence of manifolds is given by a deformation

retraction of one onto another inside a collar of the boundary of the first manifold, it descends to

the deformation of corresponding configuration spaces.
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2 Configuration spaces of compact manifolds with boundary

In this section, we compare configuration spaces of a compact connected manifoldM with nonempty

boundary ∂M and the open manifold Int(M). In the following, we assume that M is endowed with

a smooth or PL-structure.

Let Dn be a closed n-dimensional disc in Rn. The proof of the following lemma uses the

techniques developed by S.Crowley and A.Skopenkov in [5].

Lemma 2.1 For each positive integer k the space Fk(D
n) is a deformation retract of the space

Fk(R
n). Moreover, there is a Σk-equivariant deformation retraction of Fk(R

n) onto Fk(D
n).

Proof. Let Sn be n-dimensional sphere, Sn = Rn ∪ {∞}. Decompose Sn into two half-spheres S0

and S∞ where S0 = {w ∈ Rn : |w| ≤ 1} and S∞ = cl(Sn \S0). Consider the subspace R = Sn \{0}
of Sn which is homeomorphic obviously to Rn. There is a Σk-equivariant deformation retraction

gt of Fk(R) on Fk(S∞). To show this, consider in Rn ⊂ Sn a closed disc D2 of radius 2 centered in

0. Then S0 is identified with a closed unite disc D1.

Take any x = (x1, . . . , xk) ∈ Fk(R) \ Fk(S∞) and any j such that mins{|xs|} = |xj |. Denote

|xj | by ρ. We have obviously 1 > ρ > 0. Take a piece linear function h: [0, 2] → [0, 2] such that

h(0) = 0 h(2) = 2 and h(ρ) = 1. Define a map f :Fk(R) → Fk(S∞) as follows:

1)fs(x1, . . . , xk) = xs if no xi, i = 1, . . . , k, is not in Int(D1), s = 1, . . . , k,;

2)fs(x1, . . . , xk) =
xs
|xs|

2−2ρ+|xs|
2−ρ if (x1, . . . , xk) ∈ Fk(R)\Fk(S∞) and xs ∈ D2; 3) fs(x1, . . . , xk) = xs

if (x1, . . . , xk) ∈ Fk(R) \ Fk(S∞) and xs is not in Int(D2).

Note that if 2 ≥ |xs| > ρ where xs is the s coordinate of (x1, . . . , xk), then 2 ≥ |fs(x1, . . . , xk)| >
1. The map fs simply constrict the s-th coordinate vector xs of (x1, . . . , xk) ∈ Fk(R) \ Fk(S∞) in

accordance to the piece linear function h.

The map fs obviously extends to a homotopy gst via the following formula:

gst (x1, . . . , xs, . . . , xk) = (1 − t)(x1, . . . , xs, . . . , xk) + tFs(x1, . . . , xs, . . . , xk). This gives the de-

sired Σk-equivariant deformation retraction gt:Fk(R)× I → Fk(S∞).¦
Let M be a connected, compact and smooth or PL manifold with the nonempty boundary ∂M .

Theorem 2.1 For each k ≥ 1 the configuration space Fk(M) is Σk-equivariantly homotopy equiv-

alent to the configuration space Fk(IntM).

Proof. Let R1, . . . , Rm be the connected components of ∂M . Moreover let Ci, i = 1, . . . ,m

be the closed collars of R1, . . . , Rm, respectively, in M where Ci
∼= Ri × [0, 2], i = 1, . . . ,m, and

Ci ∩ Cj = ∅ if i 6= j and Ri is identified with Ri × {0}. We can also identify U = ∪m
i (Ri × [0, 1))

with a collar of ∂M in M and call it a small (open) collar of ∂M in M . Therefore each yi ∈ Ci can
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be uniquely represented as yi = (xi, τi) where xi ∈ Ri and 0 ≤ τi ≤ 2. Now we define a deformation

retraction of the manifold Fk(IntM) onto the manifold Fk(M \ U) ∼= Fk(cl(M \ (∪m
i=1Ri × [0, 1]))).

Note that the manifold Fk(M \ U) is homeomorphic to Fk(M).

Take any y = (y1, . . . , yk) ∈ Fk(IntM). Let yi1 , . . . yir be the coordinates of y that belong to the

small collar U of ∂M . Assume that the set of such the coordinates is nonempty. Let yis = (xis , τs)

for each 1 ≤ s ≤ r where xis ∈ Rjs for some js, 1 ≤ js ≤ m. Take any l such that mins{τs} = τl

where s runs from 1 to r. Denote τl by ρ. We have obviously 1 > ρ > 0. To continue, take a

piece linear function h: [0, 2] → [0, 2] as in the proof of Lemma 2.1, so that h(0) = 0 h(2) = 2 and

h(ρ) = 1.

Define a map f Fk(IntM) onto Fk((M \ U) as follows:

1)fs(y1, . . . , yk) = ys if no yi, i = 1, . . . , k, belongs to U ;

2)fs(y1, . . . , yk) = ys if some yi, i = 1, . . . , k, belongs to U and ys does not belong to ∪m
i (Ci\∂Ci);

3)fs(y1, . . . yk) = (xs,
2−2ρ+τs

2−ρ ), if (y1, . . . yk) ∈ Fk(IntM)\Fk(M \U) and ys ∈ Ci \∂Ci for some

i, where yi = (xi, τi), xi ∈ Ri, 0 < τi < 2, s = 1, . . . , k.

Note that if ρ < |τs| ≤ 2 where ys = (xs, τs) is the s-th coordinate of (y1, . . . , yk), then

2 ≥ |fs(y1, . . . , ys, . . . , yk)| > 1. Therefore the map fs sends the s-th vector ys = (xs, τs) of

(y1, . . . , yk) onto the vector (xs,
2−2ρ+τs

2−ρ ), in accordance to the piece linear function h. The map

f = (f1, . . . , fs, . . . , fk) : Fk(IntM) → Fk(M \ U) is obviously continuous, so it retracts Fk(IntM)

onto Fk(M \U) where Fk(M \U) is identified with Fk(M \(∪m
i=1Ri× [0, 1)) as it was defined before.

Moreover the map f can be extended to the homotopy gt of Fk(IntM) → Fk(IntM) with

g0 = idFk(IntM) and g1 = f . The construction of the homotopy gt runs in the same way as the one

in the proof of Lemma 2.1. It follows from definitions and our construction that gt is Σk-equivariant

deformatioin retraction of the manifold Fk(IntM) onto the manifold Fk(M \ U). This completes

the proof of the theorem.¦

Remark 2.1 The assertion of Theorem 2.2 can be strengthened in more general situation. More

precisely, let (M,L) be a pair of compact polyhedra where L is a subpolyhedron of M . Assume

that L possesses a collar U in M . Then for each k we have: Fk(M \ L) deformation retracts onto

Fk(cl(M \ U)) .

3 Discretized configuration spaces of complexes

Let K be a finite simplicial complex. Denote by |K| the underlying topological space of K which

is a polyhedron. For each k ≤ n the subcomplex Dn(K) of the cell complex Kn is defined in the

following way: Dn(K) =
⋃
σ1 × . . .× σn where the above summation is over all n pairwise disjoint

3



closed cells in K (see [2, 4]). The subcomplex Dn(K) is called the discrete configuration space of

the complex K with parameter n. This is the largest cell complex that is contained in the product

Kn minus its diagonal {(x1, . . . , xn) ∈ |K|n : |xi = xj for some i 6= j}.The symmetric group Σn acts

naturally on Dn(K) by permuting the cells in the product. The polyhedron |Dn(K)| has natural

and Σn-equivariant embedding in the configuration space Fn(G) for n ≥ 2.

A.Abrams in [1] studied configuration spaces of graphs. A graph G can considered as 1-complex.

A.Abrams proved that for each graph G there is a subdivision G′ of G such that the discrete

configuration space Dn(G
′) is homotopy equivalent to the usual configuration space Fn(G), n ≥ 2.

The problem of cell approximation of the space Fn(X) where X is polyhedron of dimension ≥ 2

has been considered and studied in [4]. For n = 2, Hu [9] showed that the configuration spaces

D2(K) and F2(K) are homotopy equivalent. Moreover he showed that for any finite simplicial

complex K there is a Σ2-equivariant deformation retraction of F2(K) onto |D2(K)|. In general, the

problem can be formulated as follows.

Problem 1. Let X be a compact connected PL-manifold of dimension k ≥ 2 and let n > 2.

Show that there is a subdivision K of X such that the manifold Fn(X) admits a Σn-equivariant

deformation retraction onto the polyhedron |Dn(K)| or present a counterexample.

As to our best knowledge, for PL-manifolds of dimension k ≥ 2, the question of cell approxi-

mation of configuration spaces remains open.
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