

Leonid PLACHTA

$Remarks \ on\ homotopy\ equivalence \ of\ configuration\ spaces \ of\ PL-manifolds$

Preprint Nr MD 094 (otrzymany dnia 30.10.2017)

Kraków 2017 Redaktorami serii preprintów Matematyka Dyskretna są: Wit FORYŚ (Instytut Informatyki UJ, Katedra Matematyki Dyskretnej AGH)

oraz

Mariusz WOŹNIAK (Katedra Matematyki Dyskretnej AGH)

Remarks on homotopy equivalence of configuration spaces of PL-manifolds

Leonid Plachta

AGH University of Science and Technology (Cracow)

Keywords: configuration space, PL-manifold, deformation retraction, equivariant map, polyhedron, collar, discretized configuration space

AMS classification: 57Q91

Abstract

In this paper, we prove that the configuration space $F_n(M)$ of n particles in a compact connected PL-manifold M with nonempty boundary ∂M is homotopy equivalent to the configuration space $F_n(\text{Int}M)$ where $\text{Int}M = M \setminus \partial M$. We formulate some generalization of this result for polyhedra. The similar results has been obtained independently for topological manifolds by C.Zapata in [11], by using somewhat different techniques.

We also address the question of whether a compact PL-manifold M can be approximated up to homotopy type by discrete configuration spaces defined combinatorially via a simplicial subdivision of M.

1 Introduction

Let X be a topological space and X^k its k-fold cartesian product, $k \geq 2$. Define the (complete) diagonal D of X^k as follows: $D = \{(x_1, \dots, x_k) \in X^k | x_i = x_j \text{ for some } i \neq j\}$.

For a given topological space X denote by $F_k(X)$ the space $X^k \setminus D$, the configuration space of k particles in X without collisions. The topology of classical classification spaces $F_k(\mathbf{R}^n)$ has been extensively studied by many authors (see for example, [6, 8] for backgrounds). A fundamental work on this topic is the monograph of Falell and Husseini [7], in which the case of sphere $X = S^m$ is also treated. The homology structure of $F_k(\mathbf{R}^n)$ was described, for example, in [3]. It is also known that configuration spaces are not homotopy invariant even for closed manifolds (see [10]). In this paper, we will show that if the homotopy equivalence of manifolds is given by a deformation retraction of one onto another inside a collar of the boundary of the first manifold, it descends to the deformation of corresponding configuration spaces.

2 Configuration spaces of compact manifolds with boundary

In this section, we compare configuration spaces of a compact connected manifold M with nonempty boundary ∂M and the open manifold $\mathrm{Int}(M)$. In the following, we assume that M is endowed with a smooth or PL-structure.

Let D^n be a closed *n*-dimensional disc in \mathbb{R}^n . The proof of the following lemma uses the techniques developed by S.Crowley and A.Skopenkov in [5].

Lemma 2.1 For each positive integer k the space $F_k(D^n)$ is a deformation retract of the space $F_k(\mathbf{R}^n)$. Moreover, there is a Σ_k -equivariant deformation retraction of $F_k(\mathbf{R}^n)$ onto $F_k(D^n)$.

Proof. Let S^n be n-dimensional sphere, $S^n = \mathbf{R}^n \cup \{\infty\}$. Decompose S^n into two half-spheres S_0 and S_∞ where $S_0 = \{w \in \mathbf{R}^n : |w| \le 1\}$ and $S_\infty = \operatorname{cl}(S^n \setminus S_0)$. Consider the subspace $R = S^n \setminus \{0\}$ of S^n which is homeomorphic obviously to \mathbf{R}^n . There is a Σ_k -equivariant deformation retraction g_t of $F_k(R)$ on $F_k(S_\infty)$. To show this, consider in $\mathbf{R}^n \subset S^n$ a closed disc D_2 of radius 2 centered in 0. Then S_0 is identified with a closed unite disc D_1 .

Take any $x=(x_1,\ldots,x_k)\in F_k(R)\setminus F_k(S_\infty)$ and any j such that $min_s\{|x_s|\}=|x_j|$. Denote $|x_j|$ by ρ . We have obviously $1>\rho>0$. Take a piece linear function $h\colon [0,2]\to [0,2]$ such that h(0)=0 h(2)=2 and $h(\rho)=1$. Define a map $f\colon F_k(R)\to F_k(S_\infty)$ as follows:

 $1)f_s(x_1,...,x_k) = x_s$ if no $x_i, i = 1,...,k$, is not in $Int(D_1), s = 1,...,k$;

2) $f_s(x_1, \ldots, x_k) = \frac{x_s}{|x_s|} \frac{2-2\rho+|x_s|}{2-\rho}$ if $(x_1, \ldots, x_k) \in F_k(R) \setminus F_k(S_\infty)$ and $x_s \in D_2$; 3) $f_s(x_1, \ldots, x_k) = x_s$ if $(x_1, \ldots, x_k) \in F_k(R) \setminus F_k(S_\infty)$ and x_s is not in $Int(D_2)$.

Note that if $2 \ge |x_s| > \rho$ where x_s is the s coordinate of (x_1, \ldots, x_k) , then $2 \ge |f_s(x_1, \ldots, x_k)| > 1$. The map f_s simply constrict the s-th coordinate vector x_s of $(x_1, \ldots, x_k) \in F_k(R) \setminus F_k(S_\infty)$ in accordance to the piece linear function h.

The map f_s obviously extends to a homotopy g_t^s via the following formula:

 $g_t^s(x_1,\ldots,x_s,\ldots,x_k)=(1-t)(x_1,\ldots,x_s,\ldots,x_k)+tF_s(x_1,\ldots,x_s,\ldots,x_k)$. This gives the desired Σ_k -equivariant deformation retraction $g_t\colon F_k(R)\times I\to F_k(S_\infty)$.

Let M be a connected, compact and smooth or PL manifold with the nonempty boundary ∂M .

Theorem 2.1 For each $k \geq 1$ the configuration space $F_k(M)$ is Σ_k -equivariantly homotopy equivalent to the configuration space $F_k(\text{Int}M)$.

Proof. Let R_1, \ldots, R_m be the connected components of ∂M . Moreover let $C_i, i = 1, \ldots, m$ be the closed collars of R_1, \ldots, R_m , respectively, in M where $C_i \cong R_i \times [0, 2], i = 1, \ldots, m$, and $C_i \cap C_j = \emptyset$ if $i \neq j$ and R_i is identified with $R_i \times \{0\}$. We can also identify $U = \bigcup_{i=1}^{m} (R_i \times [0, 1])$ with a collar of ∂M in M and call it a small (open) collar of ∂M in M. Therefore each $y_i \in C_i$ can

be uniquely represented as $y_i = (x_i, \tau_i)$ where $x_i \in R_i$ and $0 \le \tau_i \le 2$. Now we define a deformation retraction of the manifold $F_k(\text{Int}M)$ onto the manifold $F_k(M \setminus U) \cong F_k(\text{cl}(M \setminus (\bigcup_{i=1}^m R_i \times [0,1])))$. Note that the manifold $F_k(M \setminus U)$ is homeomorphic to $F_k(M)$.

Take any $y = (y_1, \ldots, y_k) \in F_k(\operatorname{Int} M)$. Let $y_{i_1}, \ldots y_{i_r}$ be the coordinates of y that belong to the small collar U of ∂M . Assume that the set of such the coordinates is nonempty. Let $y_{i_s} = (x_{i_s}, \tau_s)$ for each $1 \leq s \leq r$ where $x_{i_s} \in R_{j_s}$ for some $j_s, 1 \leq j_s \leq m$. Take any l such that $\min_s \{\tau_s\} = \tau_l$ where s runs from 1 to r. Denote τ_l by ρ . We have obviously $1 > \rho > 0$. To continue, take a piece linear function $h: [0, 2] \to [0, 2]$ as in the proof of Lemma 2.1, so that h(0) = 0 h(2) = 2 and $h(\rho) = 1$.

Define a map f $F_k(\operatorname{Int} M)$ onto $F_k((M \setminus U))$ as follows:

- $1) f_s(y_1, ..., y_k) = y_s$ if no $y_i, i = 1, ..., k$, belongs to U;
- $(2)f_s(y_1,\ldots,y_k)=y_s$ if some $y_i,i=1,\ldots,k$, belongs to U and y_s does not belong to $\bigcup_i^m(C_i\setminus\partial C_i)$;
- $3)f_s(y_1,\ldots y_k)=(x_s,\frac{2-2\rho+\tau_s}{2-\rho}), \text{ if } (y_1,\ldots y_k)\in F_k(\mathrm{Int}M)\setminus F_k(M\setminus U) \text{ and } y_s\in C_i\setminus\partial C_i \text{ for some } i, \text{ where } y_i=(x_i,\tau_i), x_i\in R_i, 0<\tau_i<2, s=1,\ldots,k.$

Note that if $\rho < |\tau_s| \le 2$ where $y_s = (x_s, \tau_s)$ is the s-th coordinate of (y_1, \ldots, y_k) , then $2 \ge |f_s(y_1, \ldots, y_s, \ldots, y_k)| > 1$. Therefore the map f_s sends the s-th vector $y_s = (x_s, \tau_s)$ of (y_1, \ldots, y_k) onto the vector $(x_s, \frac{2-2\rho+\tau_s}{2-\rho})$, in accordance to the piece linear function h. The map $f = (f_1, \ldots, f_s, \ldots, f_k) : F_k(\text{Int}M) \to F_k(M \setminus U)$ is obviously continuous, so it retracts $F_k(\text{Int}M)$ onto $F_k(M \setminus U)$ where $F_k(M \setminus U)$ is identified with $F_k(M \setminus U) = (0, 1)$ as it was defined before.

Moreover the map f can be extended to the homotopy g_t of $F_k(\text{Int}M) \to F_k(\text{Int}M)$ with $g_0 = \text{id}_{F_k(\text{Int}M)}$ and $g_1 = f$. The construction of the homotopy g_t runs in the same way as the one in the proof of Lemma 2.1. It follows from definitions and our construction that g_t is Σ_k -equivariant deformation retraction of the manifold $F_k(\text{Int}M)$ onto the manifold $F_k(M \setminus U)$. This completes the proof of the theorem.

Remark 2.1 The assertion of Theorem 2.2 can be strengthened in more general situation. More precisely, let (M, L) be a pair of compact polyhedra where L is a subpolyhedron of M. Assume that L possesses a collar U in M. Then for each k we have: $F_k(M \setminus L)$ deformation retracts onto $F_k(\operatorname{cl}(M \setminus U))$.

3 Discretized configuration spaces of complexes

Let K be a finite simplicial complex. Denote by |K| the underlying topological space of K which is a polyhedron. For each $k \leq n$ the subcomplex $D_n(K)$ of the cell complex K^n is defined in the following way: $D_n(K) = \bigcup \sigma_1 \times \ldots \times \sigma_n$ where the above summation is over all n pairwise disjoint

closed cells in K (see [2, 4]). The subcomplex $D_n(K)$ is called the discrete configuration space of the complex K with parameter n. This is the largest cell complex that is contained in the product K^n minus its diagonal $\{(x_1, \ldots, x_n) \in |K|^n : |x_i = x_j \text{ for some } i \neq j\}$. The symmetric group Σ_n acts naturally on $D_n(K)$ by permuting the cells in the product. The polyhedron $|D_n(K)|$ has natural and Σ_n -equivariant embedding in the configuration space $F_n(G)$ for $n \geq 2$.

A.Abrams in [1] studied configuration spaces of graphs. A graph G can considered as 1-complex. A.Abrams proved that for each graph G there is a subdivision G' of G such that the discrete configuration space $D_n(G')$ is homotopy equivalent to the usual configuration space $F_n(G)$, $n \ge 2$.

The problem of cell approximation of the space $F_n(X)$ where X is polyhedron of dimension ≥ 2 has been considered and studied in [4]. For n=2, Hu [9] showed that the configuration spaces $D_2(K)$ and $F_2(K)$ are homotopy equivalent. Moreover he showed that for any finite simplicial complex K there is a Σ_2 -equivariant deformation retraction of $F_2(K)$ onto $|D_2(K)|$. In general, the problem can be formulated as follows.

Problem 1. Let X be a compact connected PL-manifold of dimension $k \geq 2$ and let n > 2. Show that there is a subdivision K of X such that the manifold $F_n(X)$ admits a Σ_n -equivariant deformation retraction onto the polyhedron $|D_n(K)|$ or present a counterexample.

As to our best knowledge, for PL-manifolds of dimension $k \geq 2$, the question of cell approximation of configuration spaces remains open.

References

- [1] A.Abrams, Configuration spaces of braid groups of graphs, Ph.D. thesis, UC Berkeley, 2000.
- [2] A.Abrams, D.Gay and V.Hower Discretized configurations and partial partitions, Proc. Amer. Math. Soc., 141, 2013, pp.1093-1104.
- [3] C.-F.Bodigheimer, F.Cohen and L.Taylor, On the homology of configuration spaces, Topology, 128, Nu.1, 1989, pp. 111-123.
- [4] Byung Hee An, G.C. Drummond-Cole, and Ben Knudsen, Subdivisional spaces and graph braid groups, arXiv:1708.02351v1 [math.AT] 8 Aug 2017.
- [5] D.Crowley and A.Skopenkov, Embeddings of non-simply-connected 4-manifolds in 7-space III. PL classification, Preprint.
- [6] F.R.Cohen, Introduction to configuration spaces and their applications: In *Braids*, vol 19 of Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., pp. 183–261. World Sci. Publ., Hackensack, NJ, 2010.

- [7] E.R.Fadell, S.Y.Husseini, Geometry and Topology of Configuration Spaces, Springer-Verlag, 2001.
- [8] E.Fadell and L.Neuwirth, Configuration Spaces, Math. Scand. 10, 1962, pp.111-118.
- [9] S.T.Hu, Isotopy invariants of topological spaces, Proc. Royal Soc. A255, 1960, pp. 331-366.
- [10] P.Salvatore and R.Longoni, Configuration spaces are not homotopy invariant, Topology, 44, 2005, pp. 375-380.
- [11] Cezar A.I.Zapata, Collision-free motion planning on manifolds with boundary Preprint, 2017.