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Abstract

In this paper, we prove that the configuration space F, (M) of n particles in a compact
connected PL-manifold M with nonempty boundary M is homotopy equivalent to the configu-
ration space Fy,(Int M) where IntM = M \ OM. We formulate some generalization of this result
for polyhedra. The similar results has been obtained independently for topological manifolds
by C.Zapata in [11], by using somewhat different techniques.

We also adress the question of whether a compact PL-manifold M can be approximated
up to homotopy type by discrete configuration spaces defined combinatorially via a simplicial

subdivision of M.

1 Introduction

Let X be a topological space and XF¥ its k-fold cartesian product, k > 2. Define the (complete)
diagonal D of X* as follows: D = {(z1,...,2x) € X¥|z; = x; for some i # j}.

For a given topological space X denote by Fj(X) the space X*\ D, the configuration space
of k particles in X without collisions. The topology of classical classification spaces Fi(R") has
been extensively studied by many authors (see for example, [6, 8] for backgrounds). A fundamental
work on this topic is the monograph of Falell and Husseini [7], in which the case of sphere X = S™
is also treated. The homology structure of Fj(R"™) was described, for example, in [3]. It is also
known that configuration spaces are not homotopy invariant even for closed manifolds (see [10]).
In this paper, we will show that if the homotopy equivalence of manifolds is given by a deformation
retraction of one onto another inside a collar of the boundary of the first manifold, it descends to

the deformation of corresponding configuration spaces.



2 Configuration spaces of compact manifolds with boundary

In this section, we compare configuration spaces of a compact connected manifold M with nonempty
boundary M and the open manifold Int(M). In the following, we assume that M is endowed with
a smooth or PL-structure.

Let D™ be a closed n-dimensional disc in R™. The proof of the following lemma uses the

techniques developed by S.Crowley and A.Skopenkov in [5].

Lemma 2.1 For each positive integer k the space F,(D™) is a deformation retract of the space

Fr(R™). Moreover, there is a Y-equivariant deformation retraction of Fi(R™) onto Fj(D™).

Proof. Let S™ be n-dimensional sphere, S = R™ U {o0}. Decompose S™ into two half-spheres Sy
and Sy, where Sp = {w € R™ : |w| < 1} and Soo = ¢l(S™\ Sp). Consider the subspace R = S™\ {0}
of §™ which is homeomorphic obviously to R™. There is a ¥;-equivariant deformation retraction
gt of Fx(R) on Fj(Sx). To show this, consider in R™ C S™ a closed disc Dy of radius 2 centered in
0. Then Sy is identified with a closed unite disc D;.

Take any = (21,...,2%) € Fi(R) \ Fi(Se) and any j such that ming{|zs|} = |z;|. Denote
|zj| by p. We have obviously 1 > p > 0. Take a piece linear function h:[0,2] — [0,2] such that
h(0) =0 h(2) =2 and h(p) = 1. Define a map f: Fi(R) — Fi(Sx) as follows:

Dfs(x1,...,xk) =2z ifnox;,i =1,...,k, isnot in Int(D1),s =1,...,kj;
2 fs(z1,...,28) = ﬁw if (x1,...,2) € F(R)\ Fr(Se) and x5 € Do; 3) fs(z1,...,2%) = s

2—p
if (x1,...,21) € Fp(R) \ Fx(Sx) and zs is not in Int(Ds3).
Note that if 2 > |zs| > p where x4 is the s coordinate of (x1,...,xzx), then 2 > |fo(x1,. .., zx)| >

1. The map fs simply constrict the s-th coordinate vector x5 of (z1,...,2%) € Fr(R) \ Fr(Sx) in
accordance to the piece linear function h.

The map f, obviously extends to a homotopy g; via the following formula:

g5 (1, sy xp) = (L —t) (21, .., Zsy ..., xk) + EFs(21, ..., Ts, ..., 2k). This gives the de-
sired ¥j-equivariant deformation retraction g;: F(R) x I — Fj(Sx).©

Let M be a connected, compact and smooth or PL manifold with the nonempty boundary oM.

Theorem 2.1 For each k > 1 the configuration space Fy(M) is Y-equivariantly homotopy equiv-
alent to the configuration space Fy(IntM).

Proof. Let Ry,..., R, be the connected components of M. Moreover let C;,i = 1,...,m
be the closed collars of Ry, ..., Ry, respectively, in M where C; & R; x [0,2],i = 1,...,m, and
CinC; =0 if i # j and R; is identified with R; x {0}. We can also identify U = U*(R; x [0, 1))
with a collar of @M in M and call it a small (open) collar of 9M in M. Therefore each y; € C; can



be uniquely represented as y; = (x;, 7;) where z; € R; and 0 < 7; < 2. Now we define a deformation
retraction of the manifold Fy(IntM) onto the manifold Fj (M \ U) = Fy(cl(M \ (U, R; x [0,1]))).
Note that the manifold Fj(M \ U) is homeomorphic to Fj(M).

Take any y = (y1,...,Yk) € Fr(IntM). Let y;,, .. .y;, be the coordinates of y that belong to the
small collar U of OM. Assume that the set of such the coordinates is nonempty. Let y;, = (z4,, 7s)
for each 1 < s < r where x;;, € R, for some j;,1 < j, < m. Take any [ such that ming{7s} =7
where s runs from 1 to r. Denote 7; by p. We have obviously 1 > p > 0. To continue, take a
piece linear function h: [0, 2] — [0,2] as in the proof of Lemma 2.1, so that h(0) = 0 h(2) = 2 and
h(p) = 1.

Define a map f Fj(IntM) onto Fj((M \ U) as follows:

Dfs(y1,--- yx) =ys if no y;,i =1,..., k, belongs to U;

2)fs(y1,...,yx) = ys if some y;,7 = 1,..., k, belongs to U and ys does not belong to U (C;\0C;);

3 fs(yrs - yk) = (zs, 2_22%), if (y1,...yx) € Fe(IntM)\ F(M\U) and y, € C;\ 9C; for some
i, where y; = (24, 73),2; € R;,0 <7, <2,s=1,... k.

Note that if p < |75| < 2 where y; = (xs,75) is the s-th coordinate of (yi,...,yx), then
2 > |fs(y1y.--yYsy---,yx)| > 1. Therefore the map fs sends the s-th vector ys = (xs,7s) of
(y1,.-.,yx) onto the vector (z, %’”g“
F=Ufsy--y f&) s Fx(IntM) — Fj(M \ U) is obviously continuous, so it retracts Fj(IntM)
onto Fi,(M\U) where Fy,(M\U) is identified with Fj (M \ (U™, R; x [0,1)) as it was defined before.

Moreover the map f can be extended to the homotopy g, of F(IntM) — Fj(IntM) with

), in accordance to the piece linear function h. The map

go = idp, (mear) and g1 = f. The construction of the homotopy g; runs in the same way as the one
in the proof of Lemma 2.1. It follows from definitions and our construction that g; is Xg-equivariant
deformatioin retraction of the manifold Fj(IntM) onto the manifold Fi(M \ U). This completes

the proof of the theorem.o

Remark 2.1 The assertion of Theorem 2.2 can be strengthened in more general situation. More
precisely, let (M, L) be a pair of compact polyhedra where L is a subpolyhedron of M. Assume
that L possesses a collar U in M. Then for each k we have: Fy(M \ L) deformation retracts onto
Fr(cl(M\U)) .

3 Discretized configuration spaces of complexes

Let K be a finite simplicial complex. Denote by |K| the underlying topological space of K which
is a polyhedron. For each k < n the subcomplex D,,(K) of the cell complex K" is defined in the

following way: D, (K)=Jo1 X ... X o, where the above summation is over all n pairwise disjoint



closed cells in K (see [2, 4]). The subcomplex D,,(K) is called the discrete configuration space of
the complex K with parameter n. This is the largest cell complex that is contained in the product
K™ minus its diagonal {(x1,...,2,) € |[K|" : |z; = x; for some i # j}.The symmetric group %,, acts
naturally on D, (K) by permuting the cells in the product. The polyhedron |D, (K)| has natural
and ¥, -equivariant embedding in the configuration space Fy,(G) for n > 2.

A.Abrams in [1] studied configuration spaces of graphs. A graph G can considered as 1-complex.
A.Abrams proved that for each graph G there is a subdivision G’ of G such that the discrete
configuration space D,,(G") is homotopy equivalent to the usual configuration space F,,(G),n > 2.

The problem of cell approximation of the space F,,(X) where X is polyhedron of dimension > 2
has been considered and studied in [4]. For n = 2, Hu [9] showed that the configuration spaces
Dy(K) and F5(K) are homotopy equivalent. Moreover he showed that for any finite simplicial
complex K there is a ¥g-equivariant deformation retraction of F»(K) onto |Do(K)|. In general, the
problem can be formulated as follows.

Problem 1. Let X be a compact connected PL-manifold of dimension k > 2 and let n > 2.
Show that there is a subdivision K of X such that the manifold F,(X) admits a %, -equivariant
deformation retraction onto the polyhedron |D,(K)| or present a counterexample.

As to our best knowledge, for PL-manifolds of dimension k£ > 2, the question of cell approxi-

mation of configuration spaces remains open.
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