MATEMATYKA DYSKRETNA

Leonid PLACHTA

On measures of nonplanarity of cubic graphs

Preprint Nr MD 093
(otrzymany dnia 30.10.2017)

Redaktorami serii preprintów Matematyka Dyskretna są:
Wit FORYŚ (Instytut Informatyki UJ, Katedra Matematyki Dyskretnej AGH)
oraz
Mariusz WOŹNIAK (Katedra Matematyki Dyskretnej AGH)

On measures of nonplanarity of cubic graphs

Leonid Plachta
AGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Krakow, Poland, and
Institute of Applied Problems of Mechanics and Mathematics of NAS of Ukraine, Lviv Keywords: nonplanar graphs, cubic graphs, genus, edge deletion number, connected sum of graphs, minimal graphs
AMS classification: $05 \mathrm{C} 10,05 \mathrm{C} 15$

Abstract

We study two measures of nonplanarity of cubic graphs G, the genus $g(G)$ and the edge deletion number $e d(G)$. For cubic graphs of small order these parameters are compared with another measure of nonplanarity, the (rectiliniar) crossing number $\overline{c r}(G)$. We introduce operations of connected sum, specified for cubic graphs G, and show that under certain conditions the parameters $g(G)$ and $e d(G)$ are additive (subadditive) with respect to them.

The minimal genus graphs (i.e. the cubic graphs of minimum order with given value of genus g) and the minimal edge deletion graphs (i.e. cubic graphs of minimum order with given value of edge deletion number ed) are introduced. We also provide upper bounds for the order of minimal genus and minimal edge deletion graphs.

1 Introduction

We consider finite graphs without loops and multiple edges. The Kuratowski theorem states that a graph G is planar if and only if it does not contain subgraphs homeomorphic to K_{5} and $K_{3,3}$. For cubic graphs, the only forbidden graphs are those which are not homeomorphic to $K_{3,3}$. There are different measures of nonplanarity of a graph. Let us recall their definitions.

For a given connected graph G denote by $g(G)$ the (orientable) genus of G i.e. the minimal genus of an orientable closed connected surface M such that G has an embedding in M. Note that each such embedding is 2 -cell. The problem of deciding whether a cubic graph G has the genus $g(G) \leq m$ is known to be NP-complete [18]. There are some upper and lower bounds of $g(G)$ for different classes of graphs $G[16]$. For cubic graphs G, the precise values of the parameter $g(G)$ are known only for special classes of them (for example, for some snarks etc., see [13, 16]).

Another well known measure of nonplanarity of a graph G is the crossing number $\operatorname{cr}(G)$ (the rectilinear crossing number $\overline{c r}(G))$. This is the minimal number of proper double crossings of edges among all immersions of G in the plane (the minimal number of proper double crossings of edges
among all rectilinear immersions of G in the plane, respectively). The crossing number of a graph is also NP-complete [4]. Note that, in general, $\operatorname{cr}(G)$ and $\overline{c r}(G)$ are different numbers [2]. There are estimations of the parameters $c r(G)$ and $\overline{c r}(G)$ for complete graphs, complete bipartite graphs, and other special classes of graphs (see, for example [7, 17]). The precise values of $\operatorname{cr}(G)$ and $\overline{\operatorname{cr}}(G)$ are known only for particular nonplanar graphs (for example, for small complete and complete bipartite graphs $[14,17])$.

For a given graph G, denote by $e d(G)$ the minimal number of edges in G such that after their deletion the resulting graph becomes planar. The parameter $\operatorname{ed}(G)$ is called the edge deletion number of G and the corresponding problem of finding the minimal set of edges to be deleted in a graph G is known as MINED. Even for cubic graphs, the problem MINED is known to be NP-complete [8]. Algorithms of computing $e d(G)$, in particular, for cubic graphs, are described in $[3,8,9]$.

Comparing with the parameters $g(G)$ and $\operatorname{cr}(G)$, there are much more fewer results concerning evaluation of the number $\operatorname{ed}(G)$.

Battle et al. [1] have shown that the genus of any connected graph is equal to the sum of blocks with respect to its block decomposition. This is perhaps the first known result on additivity of the (orientable) genus of graph. The operation of the vertex amalgamation applied to 2 -connected cubic graphs gives a separable graph which contains a vertex of degree 4.

Another operation is the edge amalgamation of graphs G_{1} and $G_{2}[10]$. Miller [10] introduced the generalized genus of a graph and showed that it is additive with respect to the edge amalgamation of two graphs. The operation of edge amalgamation does not preserve the class of cubic graphs. In [5], Gross also studied bar-amalgamation of graphs.

In the present paper, we introduce two operations of connected sum of (cubic)graphs. We study additivity properties of genus and edge deletion number with respect to these operations. The first operation, when applied to two 2 -connected cubic graphs, results in a 2-connected cubic graph. Similarly, the second operation preserves, in general, the class of 3 -connected (or even cyclically 4 -edge connected) cubic graphs. Recall that a cubic graph G is called cyclic k-edge connected if no set consisting of fewer than k edges can separate two circuits of G into distinct components. Note that for cubic graphs which contain two separate cycles the values of vertex connectivity, edge connectivity and cyclic k-edge connectivity coincide for $k \leq 3$ but cyclic edge connectivity may be arbitrarily large (see [11]).

For a given graph G, the order of G will be denoted by $|G|$ and the size of G by $\|G\|$. Pegg jr and Exoo [15] introduced the notion of a minimal crossing graph. Recall that for a given natural number k a cubic graph G is called minimal k-crossing graph if $|G|=k$ and k is of the minimum
order among all cubic graph H with $\overline{c r}(H)=k$. By this analogy, we introduce minimal k-genus and minimal k-edge deletion graphs. We also provide an upper bound for the order of a 2 -connected and 3 -connected cubic graphs G, which are minimal with respect to the parameters $e d$ or g.

2 Measures of nonplanarity of cubic graphs: small orders

We start by considering the parameters $\operatorname{cr}(G)$ and $\overline{c r}(G)$ for small cubic graphs G and compare these numbers with the parameters $g(G)$ and $\operatorname{ed}(G)$.

It is easy to see that we have the following inequalities: $g(G) \leq e d(G) \leq c r(G) \leq \overline{c r}(G)$. It can be shown that for cubic graphs the difference between any two of the parameters $g(G), e d(G), \operatorname{cr}(G)$ of G can be arbitrarily large. This can be made, for example, by using results of Sections 2 and 3. Moreover, there exist graphs G for which the number $\operatorname{cr}(G)$ is less than $\overline{c r}(G)$ (more precisely, $c r(G)=4$ and $\overline{c r}(G)=m$ for any $m>4[2])$.

We shall say that a cubic graph G is minimal genus for a given value of genus l (or simply minimal l-genus) if G has (orientable) genus equal to l and is of minimum order among all 2connected cubic graphs with this property. Similarly, for a given number l, a cubic graph G is minimal edge deletion graph with the parameter l, if $e d(G)=l$ and G is of minimum order among all 2-connected cubic graphs with this property.

In this section, we evaluate or estimate the order of minimal graphs with respect to parameters g and ed for small numbers l. First we count all minimal l-crossing graphs G for small values l. Minimal l-crossing graphs have described up to value $l \leq 8$ in [15]. Note that for $l=9$ it is unknown any minimal crossing graph G. At present, for $l \geq 10$, there are only some hypothetically minimal l-crossing graphs. Using minimal l-crossing graphs, we find some minimal cubic graphs with respect to parameters $e d$ and g. For cubic graphs of small order we use the notations given in [15].

In the following, we will associate with each 2-cell embedding φ of a graph G in a closed connected oriented 2-manifold M the rotation system Π on G which, in return, determines the embedding φ up to equivalence. We will work in the piece linear category PL. For more detailed information on this subject see the monographs [6] and [12].

1. For $l=1$ there is a unique minimal crossing graph, the graph $K_{3,3}$. We have obviously $e d\left(K_{3,3}\right)=\overline{c r}\left(K_{3,3}\right)=c r\left(K_{3,3}\right)=g\left(K_{3,3}\right)=1$.
2. For $l=2$ there are two minimal crossing graphs. These are the Petersen graph P (see Fig.1b) and the graph $C N G 2 B$ (see Fig.1a). We have obviously $\operatorname{ed}(P)=2, g(P)=1$ and $\operatorname{ed}(C N G 2 B)=$ $g(C N G 2 B)=1 ;$

Figure 1: The minimal 2-crossing graphs

Lemma 2.1 For any cubic graph G of order 12 we have $g(G) \leq 1$.

Proof. Let G be a connected cubic graph of order 12. We know from [15] that if $|G| \leq 12$, then $\overline{c r}(G) \leq 2$. If the connectivity of G is equal to one, the assertion follows immediately. So we may assume that G is 2 -connected. If $\overline{c r}(G)=1$ we have obviously $g(G)=1$. If $\overline{c r}(G)=2$ and the equality reaches via a straight line drawing G in the plane, in which one edge intersects two another edges, the assertion also easily follows.

Assume that we have a drawing of G in the plane with crossings of two pairs of different edges: e_{1} and e_{2}, and f_{1} and f_{2}. Deleting the edges e_{1}, e_{2}, f_{1} and f_{2} from G, we shall obtain a subcubic multigraph H which has a natural embedding φ in the oriented plane. Denote by Π the rotation system on G associated with the embedding φ. Now consider all possible configurations of the induced planar embedding of the (multi)graph H and the positions of the deleted edges with respect to it.
a) There is a face r of the embedding φ which contains two pairs of crossing edges, say e_{1} and e_{2}, and f_{1} and f_{2}. Now there are principally three types of configurations. In the first case (see Fig. 2), we can replace the (oriented) facial circuit $d r$ of Π with three new circuits c_{1}, c_{2}, c_{3} where $c_{1}=\left(v_{5}, v_{6}, v_{8}, v_{3}, v_{4}, v_{2}, v_{3}, v_{8}, v_{7}\right), c_{2}=\left(v_{1}, v_{2}, v_{4}, v_{5}, v_{7}\right), c_{3}=\left(v_{6}, v_{1}, v_{7}, v_{8}\right)$ which contain four crossing edges e_{1}, e_{2} an f_{1}, f_{2}. All other facial circuits of Π remain without changes. As a result, we shall obtain a rotation system Π^{\prime} on G of genus one.

The second and third types of configurations are shown in Fig. 3 and 4, respectively.
In the first case, we indicate the following circuits: $c_{1}=\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)$, $c_{2}=\left(u_{12}, u_{11}, u_{10}\right), c_{3}=\left(u_{3}, u_{2}, u_{9}, u_{10}, u_{11}\right), c_{4}=\left(u_{5}, u_{4}, u_{7}, u_{8}\right)$.

In the second case we choose the following four circuits: $c_{1}=\left(u_{3}, u_{2}, u_{1}\right), c_{2}=\left(u_{6}, u_{7}, u_{8}, u_{9}\right), c_{3}=$ $\left(u_{12}, u_{1}, u_{2}, u_{11}, u_{10}, u_{9}, u_{8}\right), c_{4}=\left(u_{2}, u_{3}, u_{4}, u_{7}, u_{6}, u_{5}, u_{11}\right)$.

In both the cases we can complete the family consisting of four circuits to a rotation system R on G which induces the six facial circuits.

An exceptional case of intersection pairs of crossing edges e_{1}, e_{2} and f_{1} and f_{2} inside the face r

Figure 2:

Figure 3:
is shown in Fig. 5. The following family of circuits in G determines a rotation system R of genus one:
$R:\left\{c_{1}=\left(v_{1}, v_{2}, v_{3}, v_{4}\right), c_{2}=\left(v_{4}, v_{3}, v_{5}, v_{6}, u_{6}\right), c_{3}=\left(v_{6}, u_{2}, u_{3}, u_{5}, u_{6}\right), c_{4}=\left(u_{2}, u_{1}, u_{4}, u_{3}\right), c_{5}=\right.$ $\left.\left(u_{1}, u_{2}, v_{6}, v_{5}, v_{1}, v_{4}, u_{6}, u_{5}\right), c_{6}=\left(u_{1}, u_{5}, u_{3}, u_{4}, v_{2}, v_{1}, v_{5}, v_{3}, v_{2}, u_{4}\right)\right\}$.
b) There are two faces r_{1} and r_{2} of the embedding φ such that r_{1} contains the crossing of e_{1} and e_{2}, and r_{2} contains the crossing of f_{1} and f_{2}.

If r_{1} and r_{2} are disjoint, the existence of a rotation system Π^{\prime} on G with 6 circuits is obvious. If r_{1} and r_{2} have a unique edge in common, we have a configuration shown in Fig. 6. There is a rotation system R on G with 6 facial circuits. We indicate here only four circuits c_{1}, c_{2}, c_{3} and c_{4} which can be completed to a rotation system R of genus one. They are: $c_{1}=\left(u_{2}, u_{3}, u_{4}, u_{1}\right), c_{2}=$ $\left(u_{1}, u_{4}, u_{5}, u_{11}, u_{12}\right), c_{3}=\left(u_{11}, u_{5}, u_{6}, u_{9}, u_{10}\right), c_{4}=\left(u_{9}, u_{6}, u_{7}, u_{8}\right)$.

Assume now that r_{1} and r_{2} have two edges in common (see Fig. 7).
In this case, we indicate a rotation system R on G with the following six circuits which induces an embedding of G in the torus:

$$
R:\left\{c_{1}=\left(u_{2}, u_{1}, v_{2}, v_{1}\right), c_{2}=\left(v_{5}, v_{4}, u_{5}, u_{4}\right), c_{3}=\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right), c_{4}=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right), c_{5}=\right.
$$

Figure 4:

Figure 5:
$\left.\left(u_{2}, v_{1}, v_{6}, u_{6}, u_{5}, v_{4}, v_{3}, u_{3}\right), c_{6}=\left(u_{1}, u_{6}, v_{6}, v_{5}, u_{4}, u_{3}, v_{3}, v_{2}\right)\right\}$.
c) It can occur that H is a multigraph with three loops and the pairs of crossing edges of G are situated in the outer face p of the embedding φ. We depict in Fig. 8 such a configuration. In this case, one can easily find rotation systems R of G generating the six circuits. We indicate only four circuits of the rotation R. They are: $c_{1}=\left(u_{10}, u_{9}, u_{12}, u_{11}\right), c_{2}=\left(u_{11}, u_{12}, u_{3}, u_{4}\right), c_{3}=$ $\left(u_{4}, u_{3}, u_{2}, u_{1}\right), c_{4}=\left(u_{5}, u_{6}, u_{7}\right)$. The rotation system R induces an embedding of G in the torus.

Note that the case when one pair of crossing edges of G is inside p and the other one is inside a region bounded by a loop of H is not admissible by the assumption that the graph G is 2 -connected. \diamond
3. For $l=3$ there are eight crossing minimal graphs. Here we count them according to [15]: $C N G 3 A, C N G 3 B, C N G 3 D, C N G 3 E, C N G 3 F, C N G 3 H$, the graph $G P(7,2)$ and the Heawood graph H (see Fig. 9).

Lemma 2.2 For any 3-crossing cubic graph G we have ed $(G) \leq 2$.

Proof. The proof of the assertion uses drawing each such graph in the plane with 3 crossings. We omit here technical details of this checking and left them to the reader as an exercise. \diamond

Figure 6:

Figure 7:

Note also that $g(C N G 3 A)=2$. The proof of this fact will be given in Section 3. It follows that $C N G 3 A$ is a minimal 2-genus graph. Note that the cyclical connectivity $\zeta(G)$ of the graph $C N G 3 A$ is equal to 3 . By direct computation, all remaining seven 3 -crossing graphs have genus equal to one.
4. For $l=4$ there are two minimal crossing graphs: 8-crossed prism graph Pr_{8} (see Fig.10a) and the Möbius-Kantor graph $M K$ (see Fig.10b). By direct computation we have $\operatorname{ed}(M K)=3$ and $\operatorname{ed}\left(\operatorname{Pr}_{8}\right)=2$. Moreover it is known that the Möbius-Kantor graph $M K$ is toroidal [15]. It is not difficult to show that the graph Pr_{8} is also toroidal.
5. For $l=5$ there are two minimal crossing graphs: the Pappus graph Pap (see Fig. 11a)) and the graph $C N G 5 B$ (see Fig. 11b)). By direct computation, we have $e d(\operatorname{Pap})=3$ and $\operatorname{ed}(\operatorname{CNG5B})=2$. It is known that the Pappus graph is toroidal [15]. It is easy to show that $g(C N G 5 B) \leq 2$.

3 Additivity and minimal cubic graphs

In this section, we introduce two operations on graphs and establish some additivity properties of parameters ed and g with respect to them, in the case of cubic graphs. The first operation is the connected sum of graphs and the second one is the double (crossed) connected sum of them. We also provide some upper bounds for the order of minimal edge deletion and genus graphs for a given

Figure 8:

Figure 9: The minimal 3-crossing graphs
value l of the parameters $e d$ and g, respectively.
Let G_{1} and G_{2} be the 2-connected cubic graphs with distinguished edges e in G_{1} and f in G_{2}. Let u_{1}, u_{2} be the vertices of e and v_{1}, v_{2} the vertices of f, respectively. Remove from G_{1} the edge e, and from G_{2} the edge f. Take the disjoint sum G of resulting graphs, $G=\left(G_{1}-e\right) \sqcup\left(G_{2}-f\right)$, and joint in G the pairs of vertices: u_{1} with v_{1}, and u_{2} with v_{2}, respectively. Denote the resulting graph by $G_{1} \star G_{2}$. We shall say that $G_{1} \star G_{2}$ is the connected sum of the graphs G_{1} and G_{2} with respect to the pair of edges e and f. Note $G_{1} \star G_{2}$ is also 2-connected cubic graph.

Let G_{1} and G_{2} be any two 3 -connected graphs. Take in G_{1} a pair of nonincedent edges $\left(e_{1}, e_{2}\right)$, and in G_{2} a pair of edges $\left(f_{1}, f_{2}\right)$. Denote the vertices of e_{1} by u_{1}, u_{2}, and the vertices of e_{2} by v_{1}, v_{2}, respectively. Similarly, let s_{1}, s_{2} be the vertices of f_{1}, and t_{1}, t_{2} the vertices of f_{2}. Delete in G_{1} the edges e_{1} and e_{2}, and in G_{2} the edges f_{1} and f_{2}. Then take a disjoint sum $G=\left(G_{1}-e_{1}-e_{2}\right) \sqcup\left(G_{2}-f_{1}-f_{2}\right)$ of two graphs and joint in G the following pairs of vertices: u_{1} and s_{1}, u_{2} and s_{2}, v_{1} and t_{1}, and v_{2} and t_{2}, respectively. Denote the resulting 2 -connected graph $G_{1} * G_{2}$ and call it a double connected sum of G_{1} and G_{2}. The four edges joining the graphs $G_{1}-e_{1}-e_{2}$ and $G_{2}-f_{1}-f_{2}$ are called the bridge edges of the graph $G_{1} * G_{2}$ and are denoted

Figure 10: Graphs Pr_{8} and $M K$

a)

b)

Figure 11: The Pappus graph Pap and the graph $C N G 5 B$
h_{1}, h_{2}, h_{3} and h_{4} (see Fig. 12).

Figure 12: A Double connected sum of graphs G_{1} and G_{2}
If in the above construction, we join the vertices u_{1}, u_{2} with the vertices incident to different edges f_{1} and f_{2} (then v_{1} and v_{2} are also joined with the vertices of different edges f_{1} and f_{2}), the resulting cubic graph is called the crossed connected sum of G_{1} and G_{2} and is denoted by $G_{1} \sharp G_{2}$ (see Fig. 13).

It is clear that the operations of double connected sum and crossed connected sums are not determined uniquely and the result $G_{1} * G_{2}$ depends on the distinguished edges of two graphs.

It is naturally to ask whether the (orientable) genus is additive under taking of operations of connected sum and double connected sum of two cubic graphs. In general, the answer is negative. For example, we have $g\left(K_{3,3}\right)=1$ while $g\left(K_{3,3} \star K_{3,3}\right)=1 \neq 2$. Similarly, the genus is not additive subject to the operation of double connected sum of cubic graphs. The following assertions show

Figure 13: The crossed connected sum of graphs G_{1} and G_{2}
that under certain conditions, the (orientable) genus is subadditive or additive with respect to the operations defined above.

Theorem 3.1 Let G_{1} and G_{2} be 2-connected cubic graphs of genus k and l, respectively. Let e and f be distinguished edges of G_{1} and G_{2}, respectively and $G_{1} \star G_{2}$ be the connected sum of G_{1} and G_{2}. Then $g\left(G_{1} \star G_{2}\right) \geq g\left(G_{1}\right)+g\left(G_{2}\right)-1$. Moreover if $g\left(G_{1}-e\right)=k$ or $g\left(G_{2}-f\right)=l$, then $g\left(G_{1} \star G_{2}\right)=k+l$.

Proof. We start with proving the second assertion. Denote the two bridge edges of $G_{1} \star G_{2}$ by h_{1} and h_{2}. The inequality $g\left(G_{1} \star G_{2}\right) \leq k+l$ is rather obvious and follows from the definition of connected sum of 2-manifolds. Let $\varphi: G_{1} \star G_{2} \rightarrow M$ be a minimal embedding of the graph $G_{1} \star G_{2}$ in a closed orientable surface $M . \varphi$ is a 2 -cell embedding. Denote by Π the rotation system on $G_{1} \star G_{2}$ induced by φ. We have the following possibilities.
1). There are facial circuits c_{1} and c_{2} of Π such that c_{1} contains h_{1} (twice) and c_{2} contains h_{2} (twice). The corresponding closed faces r_{1} and r_{2} bounded by c_{1} and c_{2}, respectively, form two handles in M, H_{1} and H_{2}. Then $\chi(M) \leq 0$. Cutting M along the meridians m_{1} and m_{2} of H_{1} and H_{2} and pasting the holes by discs, we shall obtain two disjoint closed orientable surfaces, M_{1} and M_{2}. This induces embeddings of the graph $G_{1}-e$ in the surface M_{1} and the graph $G_{2}-f$ in the surface M_{2}. We have $g(M)=g\left(M_{1}\right)+g\left(M_{2}\right)+1$. Since $g\left(G_{1}-e\right)=g\left(G_{1}\right)$ or $g\left(G_{2}-f\right)=g\left(G_{2}\right)$, the assertion follows.
2). There are two facial circuits c_{1} and c_{2} of Π each of which contains both the edges h_{1} and h_{2}. Fix an orientation on M. Let r_{1} and r_{2} be the faces of the embedding φ bounded by c_{1} and c_{2}, respectively. These two faces glued along the edges h_{1} and h_{2} form a handle. Removing from M the (open) faces r_{1}, r_{2} together with the edges h_{1} and h_{2}, we shall obtain two disjoint 2-manifolds, M_{1}^{\prime} and M_{2}^{\prime} with boundaries ∂M_{1}^{\prime} and ∂M_{2}^{\prime}, respectively. Elimination of the edges h_{1} and h_{2} in $G_{1} \star G_{2}$ leads to a surgery of the rotation system Π and induces actually the rotation systems Π_{1} and Π_{2} on the graphs $G_{1}-e$ and $G_{2}-f$, respectively. More precisely, instead of the facial circuits c_{1} and c_{2} in Π we have two cycles, d_{1} and d_{2}, respectively, in Π_{1} and Π_{2}. We thus have
$g\left(G_{1} \star G_{2}\right) \geq g\left(G_{1}-e\right)+g\left(G_{2}-f\right)$. Let M_{1} and M_{2} be the surfaces that realize geometrically the rotation systems Π_{1} and Π_{2}, respectively. The subgraphs $G_{1}-e$ and $G_{2}-f$ are embedded in M_{1} and M_{2}, respectively, in a natural way. By drawing the edge e in the face D_{1} bounded by the circuit d_{1} and the edge f in the disc D_{2} bounded by the circuit d_{2}, we obtain embeddings of G_{1} into M_{1} and G_{2} into M_{2}. Therefore we have $g(M) \geq g\left(G_{1}\right)+g\left(G_{2}\right)$.
$3)$. There is a unique facial circuit c of Π which contains both the edges h_{1} and h_{2} twice. Now we proceed just as in the case 1). After surgery of the surface M we shall obtain two disjoint surfaces, M_{1} and M_{2}, such that $g(M)=g\left(M_{1}\right)+g\left(M_{2}\right)+1$. Moreover, G_{1} has embedding in M_{1} or G_{2} has embedding in M_{2}. Since $g\left(G_{1}-e\right)=g\left(G_{1}\right)$ or $g\left(G_{2}-f\right)=g\left(G_{2}\right)$ we have $g(M) \geq g\left(G_{1}\right)+g\left(G_{2}\right)$ completing the proof of the second assertion.

The first assertion follows directly from the above proof through the careful analysis of the cases 1)-3). \diamond

Corollary 3.1 Let G_{1} be a 2-connected cubic graphs with the distinguished edges e. Let e^{\prime} be a distinguished edge of the graph $K_{3,3}$ and $H=G_{1} \star K_{3,3}$ be a connected sum of G_{1} and $K_{3,3}$ subject to the edges e and e^{\prime}. If e is inessential in G_{1}, then $g(H)=g\left(G_{1}\right)+1$.

Corollary 3.2 If H is a minimal l-genus graph in the class of 2-connected graphs, then $|H| \leq 8 l-2$.

Theorem 3.2 Let G_{1} be a 3-connected cubic graph with the pair of distinguished edges e_{1} and e_{2} and G_{2} be a cyclically 4-edge connected cubic graph with the pair of distinguished edges f_{1} and f_{2}. Assume that $g\left(G_{1}-e_{1}\right)=g\left(G_{1}\right)$ or $g\left(G_{1}-e_{2}\right)=g\left(G_{1}\right)$ and $g\left(G_{2}-f_{1}-f_{2}\right) \geq g\left(G_{2}\right)-1$. Then $G_{1} * G_{2}$ is a 3-edge connected graph and $g\left(G_{1} * G_{2}\right) \geq g\left(G_{1}\right)+g\left(G_{2}\right)-1$.

Proof. Let g be an embedding of the graph $G_{1} * G_{2}$ in a surface M of minimal genus. We can cut the surface M along k disjoint nonparallel cycles $c_{1}, \ldots, c_{k}, k \leq 4$, which cross the bridge edges h_{1}, h_{2}, h_{3} and h_{4}. As a result, we obtain two (connected) submanifolds M_{1} and M_{2} such that $\partial M_{1}=\partial M_{2}=\sqcup_{i=1}^{k} c_{i}$ and $G_{2}-f_{1}-f_{2}$ is embedded in M_{1} and $G_{2}-f_{1}-f_{2}$ is embedded in M_{2}. Pasting the connected components c_{i} of ∂M_{1} by discs we obtain a closed surface M_{1}^{\prime}. In the same way we obtain from M_{2} a closed surface M_{2}^{\prime}. By assumptions, we have $g\left(M_{1}^{\prime}\right) \geq g\left(G_{1}\right)-1$ and $g\left(M_{2}^{\prime}\right) \geq g\left(G_{2}\right)-1$. Suppose that $g(G)=g\left(G_{1}\right)+g\left(G_{2}\right)-2$. This can occur only if the following equality folds: $g(M)=g\left(M_{1}^{\prime}\right)+g\left(M_{2}^{\prime}\right)$ i.e. M_{1}^{\prime} and M_{2}^{\prime} are joined with one tube in M and the number k of cycles c_{i} is equal to one. But in this case we can draw the edge e_{1} and the edge e_{2} in the disc D pasted to M_{1}. This would give embeddings of both the graphs $G_{1}-e_{1}$ and $G_{1}-e_{2}$ in the surface M_{1}^{\prime} of genus $g\left(G_{1}\right)-1$ contradicting to the assumption. \diamond

Note also that an analogue of Theorem 3.4 holds also for crossed connected sum of cubic graphs.

Let G_{1} be a 2-connected cubic graph with distinguished pair of non incident edges $\left(e_{1}, e_{2}\right)$ where $e_{1}=\left(u_{1}, v_{1}\right), e_{2}=\left(u_{2}, v_{2}\right)$ and let G_{2} be a connected cubic graph with distinguished pair of edges $\left(f_{1}, f_{2}\right)$ where $f_{1}=\left(u_{1}^{\prime}, v_{1}^{\prime}\right), e_{2}=\left(u_{2}^{\prime}, v_{2}^{\prime}\right)$. Assume that the following conditions are satisfied:
(i) $g\left(G_{1}\right)=k>0$ and $g\left(G_{1}-e_{1}\right)=k$ or $g\left(G_{1}-e_{2}\right)=k$;
(ii) $g\left(G_{2}\right)=1$ and $g\left(G_{2}-f_{2}-f_{1}\right)=1$ or $g\left(G_{2}\right)=0$ and for any plain embedding of $G_{2}-f_{2}-f_{1}$ there is no facial circuit c^{\prime} containing the four vertices $u_{1}^{\prime}, v_{1}^{\prime}, u_{2}^{\prime}, v_{2}^{\prime}$ and the only possibility that the two facial circuits $c_{1}^{\prime}, c_{2}^{\prime}$ cover all these vertices is that one of them contains the vertices $u_{1}^{\prime}, u_{2}^{\prime}$ and the other one contains the vertices $v_{1}^{\prime}, v_{2}^{\prime}$.

For a moment, let $G_{1} \sharp G_{2}$ denote the crossed connected sum of cubic graphs G_{1} and G_{2} in which the vertices of the pair $\left\{u_{1}, v_{1}\right\}$ are joined to the vertices of the pair $\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\}$ and the vertices of the pair $\left\{u_{2}, v_{2}\right\}$ to the vertices of the pair $\left\{v_{1}^{\prime}, v_{2}^{\prime}\right\}$.

Theorem 3.3 Let G_{1} and G_{2} be connected cubic graphs that satisfy conditions (i) and (ii). Assume that G_{1} is 3-connected and G_{2} is cyclically 4-edge connected. Then $G_{1} \sharp G_{2}$ is 3-connected graph and $g\left(G_{1} \sharp G_{2}\right)=k+1$.

Proof. The first assertion follows from the definition of the crossed connected sum of cubic graphs and its proof uses standard graph-theoretical tools. We omit here technical details.

It remains to prove the second assertion. Suppose contrary, that $g\left(G_{1} \sharp G_{2}\right) \leq k$. Let φ be a minimal embedding of $G_{1} \sharp G_{2}$ into an orientable surface M of genus k. Consider the embedding ψ of the subgraph $G_{1}-e_{1}-e_{2}$ into M induced by the embedding φ.

Let $N\left(G_{1}\right)$ be an open regular neighborhood of the polyhedron $\psi\left(G_{1}-e_{1}-e_{2}\right)$ in M. The image $\varphi\left(G_{2}-f_{1}-f_{2}\right)$ is contained in one connected component of the 2-manifold $M_{2}=M \backslash N\left(G_{1}\right)$, say s. The component s cannot be a disc (i.e. a face of the embedding ψ). Indeed otherwise the bridge edges of H would join the four vertices from $G_{2}-f_{1}-f_{2}$ to four vertices of $G_{1}-e_{1}-e_{2}$ in a disc. But this is impossible by condition (ii). Therefore s contains tubes (i.e. is a submanifold with nontrivial fundamental group). It follows that $g\left(G_{1} \sharp G_{2}\right) \geq k$.

It can occur that ∂s consists of one connected component, a circle c. Then $M_{1}=\operatorname{cl}(M \backslash s)$ is a 2-manifold with the boundary $\partial M_{1}=c$. After gluing a disc D to M_{1} along the circle c we shall obtain a surface T of genus $k-1$. In this case we can draw the edge e_{1} (or the edge e_{2}) in the disc D and obtain an embedding of the graph $G_{1}-e_{1}$ into the surface M_{1} contradicting with the equality $g\left(G_{1}-e_{1}\right)=k$. We thus exclude such a possibility.

Suppose now that s is glued to the rest of the surface M along two or more circles c_{i}. The number of circles cannot be bigger than two, otherwise the genus of M would be bigger than k, contradicting to our assumption.

Assume that s has two boundary components, c_{1} and c_{2}. Then s is a cylinder and $g(\operatorname{cl}(M \backslash s))=$ $k-1$. There are two tubes t_{1} and t_{2} inside s which contain four bridge edges of the graph $G_{1} \sharp G_{2}$. A tube $t_{i}, i=1,2$, cannot contain three bridge edges h_{l}, otherwise one circle c_{i}^{\prime} would contain three vertices from the set $L=\left\{u_{1}^{\prime}, v_{1}^{\prime}, u_{2}^{\prime}, v_{2}^{\prime}\right\}$ and the other circle c_{3-i}^{\prime} contains the remaining vertex, which is impossible by condition (ii).

Therefore the first tube t_{1}, bounded by c_{1} on one side, contains two bridge edges h_{1} and h_{2} joining the ends of the edge e_{1} to the vertices, say u_{1}^{\prime} and u_{2}^{\prime}, positioned on the facial circuit c_{1}^{\prime} of $G_{2}-f_{1}-f_{2}$. Similarly, the second tube t_{2}, bounded by c_{2} on one side, contains the remaining bridge edges h_{3} and h_{4} which join the ends of the edge e_{2} to the vertices v_{1}^{\prime} and v_{2}^{\prime}, positioned on the second facial circuit c_{2}^{\prime} of $G_{2}-f_{1}-f_{2}$ (see Fig. 14). In this case we can add the edges $e_{1}=\left(u_{1}, v_{1}\right)$ and $e_{2}=\left(u_{2}, v_{2}\right)$ to the subgraph $G_{1}-e_{1}-e_{2}$ and draw them in the 2-manifold $N\left(G_{1}\right)$. It follows that the graph G_{1} admits embedding in a surface of genus $k-1$ contradicting to the condition (i). This completes the proof of the second assertion. \diamond

Figure 14:

Note that there are in $G_{1} \sharp G_{2}$ at least two non incident edges which are inessential with respect to genus.

Example 2. Consider the cubic graph H obtained from $K_{3,3}$ by doubling an edge e. Instead of e, we have two edges e_{1} and e_{2} (see Fig. 15). Take the edges e_{1} and e_{2} to be distinguished in H. Removing from H the edges e_{1} and e_{2}, we shall obtain a subcubic graph H^{\prime}.

It is clear that H^{\prime} admits a unique planar embedding ρ and the graph H satisfies the condition (i) (subject to the pair of edges e_{1} and e_{2}). Moreover the graph H also satisfies the condition (ii) (subject to the pair of edges e_{1} and e_{2}). It follows that $g(H \sharp H)=2$. Note also that $H \sharp H$ is cyclically 4 -edge connected cubic graph.

Figure 15: The cubic graph H

Lemma 3.1 The genus of cubic graph CNG3A is equal to 2 .

Proof. Cut the graph $C N G 3 A$ across four edges as shown in Fig. 16. We have a decomposition of $C N G 3 A$ into two planar graphs G_{1} and G_{2} such that G_{1} contains four semiedges e_{1}, e_{2}, e_{3} and e_{4} and G_{2} contains four semiedges f_{1}, f_{2}, f_{3} and f_{4}.

Figure 16:

Suppose that the graph $C N G 3 A$ is toroidal. Let φ denote embedding of this graph in the torus T. Then φ induces embeddings φ_{1} and φ_{2} of the subgraphs G_{1} and G_{2}, respectively, in the torus. Let N_{1} be an open regular neighborhood of the graph $\varphi_{1}\left(G_{1}\right)$ and N_{2} be an open regular neighborhood of the graph $\varphi_{1}\left(G_{2}\right)$ in the torus. Then G_{1} is contained in one connected component t of the 2-manifold $c l\left(T \backslash N_{2}\right)$ and G_{2} is contained in one connected component s of the 2-manifold $c l\left(T \backslash N_{1}\right)$. The component t cannot be a disc since there is no planar embedding of G_{1} which contains all semiedges inside the same region r. Similarly the component s is not a disc. Therefore the only possibility to obtain embedding of the graph $C N G 3 A$ in the torus is as follows. The subgraph G_{1} is embedding into a sphere S_{1} with two holes, the subgraph G_{1} is embedding into a sphere S_{2} with two holes and the spheres S_{1} and S_{2} are joining by two tubes τ_{1} and τ_{2} which contain four pairs of glued semiedges: $\left(e_{1}, f_{1}\right),\left(e_{2}, f_{2}\right),\left(e_{3}, f_{3}\right)$ and $\left(e_{4}, f_{4}\right)$. By careful inspection
all possibilities we can easily check that this is impossible. \diamond
Now starting from the graph $C N G 3 A$ and the graph H in Example 2 and using Theorem 3.5 and Lemma 3.6, we can inductively construct a sequence of 3 -connected cubic graphs H_{l} of order $8 l$ with $g\left(H_{l}\right)=l$.

Corollary 3.3 If H is minimal l-genus graph in the class of 3 -connected cubic graphs, then $|H| \leq$ $8 l$.

Denote by $\chi^{\prime}(G)$ the chromatic index of the graph G. A cubic graph G is called colorable if $\chi^{\prime}(G)=3$, otherwise G is called uncolorable (i.e. $\chi^{\prime}(G)=4$) or a weak snark. A weak snark which is cyclically 4 -edge connected and whose girth is at least five is called a snark [13].

The Petersen graph is a simplest example of a snark. Using the operation of dot product (see Fig. 17), one obtains from any two snarks of orders k and l, respectively, a a bigger snark of order $k+l-2$. Note that the dot product $G_{1} \cdot G_{2}$ of two cubic graphs G_{1} and G_{2} is defined non uniquely.

Figure 17: The dot product of two snarks
In [13], the authors consider different powers P^{k} of the Petersen graph P and study their genus. A k th power P^{k} of the Petersen graph P is defined inductively: $P^{k}=P \cdot P^{k-1}$, where \cdot denote a dot product of the cubic graphs. Since the dot product of two cubic graphs is defined non uniquely, there are several powers P^{n} of the snark P for each natural number $n \geq 2$.

In [13], the authors construct for each pair (k, n) of natural numbers k and n, where $k \leq n$ and $k, n \geq 1$, the powers P^{n} such that $g\left(P^{n}\right)=k$. Since the order of P^{n} is equal to $8 n+2$ we have the following upper bound for the order of minimal l-minimal graphs: $g(l) \leq 8 l+2$. This estimation is slightly weaker than the one given above.

This is an open problem to evaluate the number $e d\left(P^{n}\right)$ of the powers P^{n} of the Petersen graph P such that $g\left(P^{n}\right)=k$.

Now we consider how change the parameter ed of cubic graphs when we apply to them operations of connected and double connected sum of graphs. A simple example shows that this parameter is not additive under the connected sum of cubic graphs. It suffice to consider the graphs $K_{3,3} * K_{3,3}$
and $K_{3,3} \star K_{3,3}$. Indeed we have $\operatorname{ed}\left(K_{3,3}\right)=1$ and $\operatorname{ed}\left(K_{3,3} \star K_{3,3}\right)=1$. Moreover $\operatorname{ed}\left(K_{3,3} * K_{3,3}\right)=1$ for appropriate choice of pairs of the non incident edges in the first and second copies of $K_{3,3}$. However under certain conditions an analogue of additivity property holds also for the parameter ed.

Let G be a cubic graph and e and f are two distinguished edges of G. We shall say that the edge e is inessential (the pair $\{e, f\}$ of edges is inessential) if $e d(G-e)=e d(G)(e d(G-e-f) \geq e d(G)-1$, respectively).

Theorem 3.4 Let G_{1} and G_{2} be two 2-connected cubic graphs with the distinguished edges e in G_{1} and f in G_{2}, respectively. Let $e d\left(G_{1}\right)=k>0$ and $e d\left(G_{2}\right)=l>0$. Then $e d\left(G_{1} \star G_{2}\right) \geq k+l-1$. Moreover if $\operatorname{ed}\left(G_{1}-e\right)=k$ and $\operatorname{ed}\left(G_{2}-f\right)=l$, then $\operatorname{ed}\left(G_{1} \star G_{2}\right)=k+l$.

Proof. Denote the vertices of e in G_{1} by v_{1} and v_{2} and the vertices of f in G_{2} by u_{1} and u_{2}. Put $e d\left(G_{1} \star G_{2}\right)=m$. Let $E=\left\{e_{1}, \ldots, e_{m}\right\}$ be the minimal set of edges in $G_{1} \star G_{2}$ such that $G-E$ is planar. Assume that E contains neither the edge $t_{1}=\left(u_{1}, v_{1}\right)$ nor the edge $t_{2}=\left(u_{2}, v_{2}\right)$. There is a path p_{1} joining u_{1} to u_{2} in $G_{1}-\left\{e, e_{1}, \ldots, e_{m}\right\}$ or a path p_{2} in $G_{2}-\left\{f, e_{1}, \ldots, e_{m}\right\}$. It follows that $\left|E\left(G_{1}-e\right) \cap E\right| \geq k$ or $\left|E\left(G_{2}-f\right) \cap E\right| \geq l$. Moreover $\left|E\left(G_{1}-e\right) \cap E\right| \geq k-1$ and $\left|E\left(G_{2}-f\right) \cap E\right| \geq l-1$, from what the inequality $|E| \geq k+l-1$ follows.

Assume that E contains one of the edges t_{1}, t_{2}. Then E contains at least $k-1$ edges of $G_{1}-e$ and $l-1$ edges of $G_{2}-f$, and the first assertion follows.

The second assertion of the theorem follows directly from the definitions of the connected sum of cubic graphs and the minimal edge deletion set. \diamond

Theorem 3.5 Let G_{1} be a 3-connected cubic graph with ed $\left(G_{1}\right)=k>0$ and G_{2} a cyclically 4-edge connected cubic graph with ed $\left(G_{2}\right)=l>0$. Let $\left\{e_{1}, f_{1}\right\}$ be a pair of distinguished non incident edges in G_{1} and $\left\{e_{2}, f_{2}\right\}$ a pair of non incident distinguished edges in G_{2}. Assume that in both the pairs each edge is inessential. Then $G_{1} * G_{2}$ is a 3 -connected cubic graph and ed $\left(G_{1} * G_{2}\right) \geq k+l$.

Proof. Let $e_{1}=\left(u_{1}, u_{1}^{\prime}\right), f_{1}=\left(v_{1}, v_{1}^{\prime}\right), e_{2}=\left(u_{2}, u_{2}^{\prime}\right)$ and $f_{2}=\left(v_{2}, v_{2}^{\prime}\right)$. The bridge edges in $H=G_{1} * G_{2}$ are the following: $h_{1}=\left(u_{1}, u_{2}\right), h_{2}=\left(u_{1}^{\prime}, u_{2}^{\prime}\right), h_{3}=\left(v_{1}, v_{2}\right), h_{4}=\left(v_{1}^{\prime}, v_{2}^{\prime}\right)$. The subgraph of the graph H formed by four bridge edges is denoted by B. Put $G_{1}^{\prime}=G_{1}-e_{1}-f_{1}$ and $G_{2}^{\prime}=G_{1}-e_{2}-f_{2}$. Let $R=\left\{r_{1}, \ldots r_{s}\right\}$ be a minimal edge deletion set in H. The planar graph $H-R$ is connected. We have the following three possibilities:

1) R contains two or three bridge edges h_{i} from B. Since $e d\left(G_{1}^{\prime}\right) \geq k-1$ and $e d\left(G_{2}^{\prime}\right) \geq l-1$, it follows that $e d(H) \geq k+l$.
2) R does not contain any bridge edge h_{i}. First note that if the subgraph $G_{1}^{\prime}-R$ is disconnected, then $\left\|G_{1}^{\prime} \cap R\right\| \geq k$. Indeed, suppose contrary that $\left\|G_{1}^{\prime} \cap R\right\| \leq k-1$. Then we can add some edge r_{i} from R to $G_{1}^{\prime}-R$ to obtain a planar subgraph U_{1} of G_{1}^{\prime}. But this contradicts to the assumption that $e d\left(G_{1}^{\prime}\right) \geq k-1$. Similarly, if the subgraph $G_{2}^{\prime}-R$ is disconnected, then $\left\|G_{2}^{\prime} \cap R\right\| \geq l$.

Consider a planar drawing g of the connected graph $H-R$. Let g_{1} and g_{2} be the planar embeddings of the subgraphs $G_{1}^{\prime}-R$ and $G_{2}^{\prime}-R$, respectively, induced by g. Now the proof of the assertion reduces to considering the following three subcases.
(i) both the subgraphs $G_{1}^{\prime}-R$ and $G_{2}^{\prime}-R$ are connected. Since $G_{1}^{\prime}-R$ is connected, the plane subgraph $D_{2}=\left(G_{2}^{\prime} \cup B\right)-R$ is contained in a face μ of the 2-cell embedding g_{1} of the plane graph $G_{1}^{\prime}-R$. This means that the vertices $u_{1}, u_{1}^{\prime}, v_{1}, v_{1}^{\prime}$ of $G_{1}^{\prime}-R$ are situated on the same facial circuit c, the circuit that bounds the face μ. We can draw the edge e_{1} (or the edge f_{1}) in the face μ and obtain a planar embedding of the subgraph $G_{1}-\left(f_{1} \cup R\right)$ (see Fig. 18). Since the edge f_{1} is inessential in G_{1} we have $\left\|G_{1}^{\prime} \cap R\right\| \geq k$. In the same way we can prove that $\left\|G_{2}^{\prime} \cap R\right\| \geq l$. It follows that $\|R\| \geq k+l$.

Figure 18:
(ii) both the subgraphs $G_{1}^{\prime}-R$ and $G_{2}^{\prime}-R$ are disconnected. Then $\left\|G_{2}^{\prime} \cap R\right\| \geq l$ and $\left\|G_{1}^{\prime} \cap R\right\| \geq k$, so $\|R\|=k+l$;
(iii) one of the subgraphs $G_{1}^{\prime}-R$ and $G_{2}^{\prime}-R$ is connected and the other is disconnected. Suppose for instance that $G_{1}^{\prime}-R$ is connected and $G_{2}^{\prime}-R$ is disconnected. Since $G_{2}^{\prime}-R$ is disconnected, we have $\left\|G_{2}^{\prime} \cap R\right\|=l$. If $\left\|G_{1}^{\prime} \cap R\right\|=k$ we have $\|R\|=k+l$. Suppose that $\left\|G_{1}^{\prime} \cap R\right\|=k-1$. The plane subgraph $D_{1}=\left(G_{1}^{\prime} \cup B\right)-R$ is contained in a connected region s of the planar embedding of the graph $G_{2}^{\prime}-R$. Note that s may not be a 2-cell. (see Fig. 19). In any case, we can draw the edge e_{1} (or the edge f_{1}) in the region s and obtain a planar embedding of the subgraph $G_{1}-\left(R \cup f_{1}\right)$ (the subgraph $G_{1}-\left(R \cup e_{1}\right)$, respectively). But this means that $\operatorname{ed}\left(G_{1}-f_{1}\right)=k-1$ contradicting to the assumption. Therefore $\left\|G_{1}^{\prime} \cap R\right\|=k$ and $\|R\|=k+l$.

Figure 19:
3) R contains one bridge edge h_{i}. If $\left\|G_{2}^{\prime} \cap R\right\| \geq l$ or $\left\|G_{1}^{\prime} \cap R\right\| \geq k$, the assertion follows. Suppose that $\left\|G_{2}^{\prime} \cap R\right\|=l-1$ and $\left\|G_{1}^{\prime} \cap R\right\|=k-1$. By the same arguments as in the case 2), we conclude that both the graphs $G_{1}^{\prime}-R$ and $G_{2}^{\prime}-R$ are connected. Let g be a planar embedding of the connected graph $H-R$. The embedding g induces planar embeddings g_{1} and g_{2} of the subgraphs $G_{1}^{\prime}-R$ and $G_{1}^{\prime}-R$, respectively. Since $G_{1}^{\prime}-R$ is connected, the plane subgraph $D_{2}=\left(G_{2}^{\prime} \cup B\right)-R$ is contained in a face γ of the plane graph $G_{2}^{\prime}-R$. This means that three vertices of $G_{1}^{\prime}-R$ from the set $\left\{u_{1}, u_{1}^{\prime}, v_{1}, v_{1}^{\prime}\right\}$ are situated on the same facial circuit c, the circuite that bounds the face γ. Therefore we can draw the edge e_{1} or the edge f_{1} in the face γ which gives in planar embedding of the subgraph $G_{1}-\left(f_{1} \cup R\right)\left(G_{1}-\left(e_{1} \cup R\right)\right.$, respectively). Since the edges e_{1} and f_{1} are inessential in G_{1} we have $\left\|G_{1}^{\prime} \cap R\right\| \geq k$, contradicting to our assumption.

We thus conclude that in any case $\|R\| \geq k+l$. We have proved that $e d(H) \geq k+l$. The first assertion of the theorem is rather obvious. \diamond

Note that any bridge edge of the graph H is inessential.
Theorem 3.9 can be used in constructing 3-connected or even cyclically 4-edge connected cubic graphs G of order $6 n$ such that $e d(G) \geq n$ for any natural number $n>0$. We can start from the Möbius-Kantor graph $M K$ and pick one edge e in it. Replacing the edge e with two parallel edges, e^{\prime} and $e^{\prime \prime}$, we obtain a cubic graph G with two distinguish edges, e^{\prime} and $e^{\prime \prime}$. Taking two copies of G, the cubic graphs G^{\prime} and G_{1}, and applying to them the operation of double connected sum, we shall obtain a 3 -connected cubic graph H_{2} of order 36 . By Theorem 3.9 , we have $e d\left(H_{2}\right)=6$. Continuing this iteration process, we obtain a sequence of cyclically 4-edge connected cubic graphs H_{n} of order $18 n$ with $\operatorname{ed}\left(H_{n}\right)=3 n$.

Corollary 3.4 If H is an l-edge deletion minimal graph in the class of 3-connected and cyclically 4-edge connected cubic graphs, then $|H| \leq 6 l$.

Question. We provided above some upper bounds for the order of edge deletion minimal (cubic) graphs and genus minimal (cubic) graphs. What about lower bounds for these graph parameters?

References

[1] F.Battle, F. Harary, Y. Kodama, and J. W. T. Youngs, Additively of the genus of a graph, Bull. Amer. Math. Soc., 68, 1962, pp. 565-568.
[2] D.Bienstock and N.Dean, Bounds for Rectilinear Crossing Numbers, J. Graph Th. 17, 1993, pp.333-348.
[3] G.Calinescu, C.G.Fernandes, U.Finkler, and H.Karloff, A better approximation algorithm for finding planar subgraphs, J. Algorithms, 27, 1998, pp. 269-302.
[4] M.R.Garey and D.S.Johnson, Crossing Number is NP-Complete, SIAM J. Alg. Discr. Meth 4, 1983, pp.312-316.
[5] J.L.Gross, Embeddings of cubic Halin graphs: Genus distributions, Ars Mathematica Contemporanea 6, 2013, pp. 3756.
[6] J.L.Gross, T.W.Tucker, The topological graph theory, Dover Publications Inc., New York, 2012.
[7] R.K.Guy A combinatorial problem, Nabla (Bulletin of the Malayan Mathematical Society) 7, 1960, pp. 68-72.
[8] G.L.Faria, C.M.Herrera de Figueiredo, and C.F.X. de Mendonça, On the complexity of the approximation of nonplanarity parameters for cubic graphs, Discr. Appl. Math. 141, 2004, pp. 119-134.
[9] G. L. Faria, C. M. Herrera de Figueiredo, S. Gravier, C. F. X. de Mendonça, and J. Stolfi, On maximum planar induced subgraphs, Discr. Appl. Math. 154, 2006, pp. 1774-1782.
[10] G. Miller, An Additivity Theorem for the Genus of a Graph, J. Combin. Theory, Ser. B. 43, 1987, pp. 25-47.
[11] R.Lukot'ka, E.Máčajová, J.Mazák, M.Škoviera, Small snarks with large oddness, Electron. J. Combin. 22(1), 2015, \sharp P1.51
[12] B.Mohar, C.Thomassen, Graphs on surfaces, Johns Hopkins University Press, 2001, 291p.
[13] B.Mohar and A.Vodopivec The genus of Petersen powers, J. Graph Theory 67, 2011, pp. 18.
[14] S.Pan and R.B.Richter, The Crossing Number of K_{11} is 100, J. Graph Th. 56, 2007, pp. 128-134.
[15] E.Pegg Jr and G.Exoo, Crossing Number Graphs, The Mathematica Journal 11:2, 2009, pp. 161-170.
[16] G.Ringel, The map color theorem, Springer-Verlag, New York, 1975.
[17] L.A.Szekely, A successful concept for measuring non-planarity of graphs: the crossing number, Discrete Mathematics 276, 2004, pp. 331-352.
[18] C.Thomassen, The graph genus problem is NP-complete, J. Algorithms 10, 1989, pp. 568-576.

