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Abstract

We study two measures of nonplanarity of cubic graphs G, the genus g(G) and the edge
deletion number ed(G). For cubic graphs of small order these parameters are compared with
another measure of nonplanarity, the (rectiliniar) crossing number cr(G). We introduce oper-
ations of connected sum, specified for cubic graphs G, and show that under certain conditions
the parameters g(G) and ed(G) are additive (subadditive) with respect to them.

The minimal genus graphs (i.e. the cubic graphs of minimum order with given value of genus
g) and the minimal edge deletion graphs (i.e. cubic graphs of minimum order with given value
of edge deletion number ed) are introduced. We also provide upper bounds for the order of
minimal genus and minimal edge deletion graphs.

1 Introduction

We consider finite graphs without loops and multiple edges. The Kuratowski theorem states that a

graph G is planar if and only if it does not contain subgraphs homeomorphic to K5 and K3,3. For

cubic graphs, the only forbidden graphs are those which are not homeomorphic to K3,3. There are

different measures of nonplanarity of a graph. Let us recall their definitions.

For a given connected graph G denote by g(G) the (orientable) genus of G i.e. the minimal

genus of an orientable closed connected surface M such that G has an embedding in M . Note that

each such embedding is 2-cell. The problem of deciding whether a cubic graph G has the genus

g(G) ≤ m is known to be NP-complete [18]. There are some upper and lower bounds of g(G) for

different classes of graphs G [16]. For cubic graphs G, the precise values of the parameter g(G) are

known only for special classes of them (for example, for some snarks etc., see [13, 16]).

Another well known measure of nonplanarity of a graph G is the crossing number cr(G) (the

rectilinear crossing number cr(G)). This is the minimal number of proper double crossings of edges

among all immersions of G in the plane (the minimal number of proper double crossings of edges
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among all rectilinear immersions of G in the plane, respectively). The crossing number of a graph

is also NP-complete [4]. Note that, in general, cr(G) and cr(G) are different numbers [2]. There

are estimations of the parameters cr(G) and cr(G) for complete graphs, complete bipartite graphs,

and other special classes of graphs (see, for example [7, 17]). The precise values of cr(G) and cr(G)

are known only for particular nonplanar graphs (for example, for small complete and complete

bipartite graphs [14, 17]).

For a given graph G, denote by ed(G) the minimal number of edges in G such that after their

deletion the resulting graph becomes planar. The parameter ed(G) is called the edge deletion

number of G and the corresponding problem of finding the minimal set of edges to be deleted

in a graph G is known as MINED. Even for cubic graphs, the problem MINED is known to be

NP-complete [8]. Algorithms of computing ed(G), in particular, for cubic graphs, are described in

[3, 8, 9].

Comparing with the parameters g(G) and cr(G), there are much more fewer results concerning

evaluation of the number ed(G) .

Battle et al. [1] have shown that the genus of any connected graph is equal to the sum of blocks

with respect to its block decomposition. This is perhaps the first known result on additivity of

the (orientable) genus of graph. The operation of the vertex amalgamation applied to 2-connected

cubic graphs gives a separable graph which contains a vertex of degree 4.

Another operation is the edge amalgamation of graphsG1 andG2 [10]. Miller [10] introduced the

generalized genus of a graph and showed that it is additive with respect to the edge amalgamation

of two graphs. The operation of edge amalgamation does not preserve the class of cubic graphs. In

[5], Gross also studied bar-amalgamation of graphs.

In the present paper, we introduce two operations of connected sum of (cubic)graphs. We study

additivity properties of genus and edge deletion number with respect to these operations. The first

operation, when applied to two 2-connected cubic graphs, results in a 2-connected cubic graph.

Similarly, the second operation preserves, in general, the class of 3-connected (or even cyclically

4-edge connected) cubic graphs. Recall that a cubic graph G is called cyclic k-edge connected if

no set consisting of fewer than k edges can separate two circuits of G into distinct components.

Note that for cubic graphs which contain two separate cycles the values of vertex connectivity, edge

connectivity and cyclic k-edge connectivity coincide for k ≤ 3 but cyclic edge connectivity may be

arbitrarily large (see [11]).

For a given graph G, the order of G will be denoted by |G| and the size of G by ‖G‖. Pegg jr

and Exoo [15] introduced the notion of a minimal crossing graph. Recall that for a given natural

number k a cubic graph G is called minimal k-crossing graph if |G| = k and k is of the minimum
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order among all cubic graph H with cr(H) = k. By this analogy, we introduce minimal k-genus and

minimal k-edge deletion graphs. We also provide an upper bound for the order of a 2-connected

and 3-connected cubic graphs G, which are minimal with respect to the parameters ed or g.

2 Measures of nonplanarity of cubic graphs: small orders

We start by considering the parameters cr(G) and cr(G) for small cubic graphs G and compare

these numbers with the parameters g(G) and ed(G).

It is easy to see that we have the following inequalities: g(G) ≤ ed(G) ≤ cr(G) ≤ cr(G). It can

be shown that for cubic graphs the difference between any two of the parameters g(G), ed(G), cr(G)

of G can be arbitrarily large. This can be made, for example, by using results of Sections 2 and

3. Moreover, there exist graphs G for which the number cr(G) is less than cr(G) (more precisely,

cr(G) = 4 and cr(G) = m for any m > 4[2]).

We shall say that a cubic graph G is minimal genus for a given value of genus l (or simply

minimal l-genus) if G has (orientable) genus equal to l and is of minimum order among all 2-

connected cubic graphs with this property. Similarly, for a given number l, a cubic graph G is

minimal edge deletion graph with the parameter l, if ed(G) = l and G is of minimum order among

all 2-connected cubic graphs with this property.

In this section, we evaluate or estimate the order of minimal graphs with respect to parameters

g and ed for small numbers l. First we count all minimal l-crossing graphs G for small values

l. Minimal l-crossing graphs have described up to value l ≤ 8 in [15]. Note that for l = 9 it is

unknown any minimal crossing graph G. At present, for l ≥ 10, there are only some hypothetically

minimal l-crossing graphs. Using minimal l-crossing graphs, we find some minimal cubic graphs

with respect to parameters ed and g. For cubic graphs of small order we use the notations given in

[15].

In the following, we will associate with each 2-cell embedding ϕ of a graph G in a closed

connected oriented 2-manifold M the rotation system Π on G which, in return, determines the

embedding ϕ up to equivalence. We will work in the piece linear category PL. For more detailed

information on this subject see the monographs [6] and [12].

1. For l = 1 there is a unique minimal crossing graph, the graph K3,3. We have obviously

ed(K3,3) = cr(K3,3) = cr(K3,3) = g(K3,3) = 1.

2. For l = 2 there are two minimal crossing graphs. These are the Petersen graph P (see Fig.1b)

and the graph CNG2B (see Fig.1a). We have obviously ed(P ) = 2, g(P ) = 1 and ed(CNG2B) =

g(CNG2B) = 1;
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a) b)

Figure 1: The minimal 2-crossing graphs

Lemma 2.1 For any cubic graph G of order 12 we have g(G) ≤ 1.

Proof. Let G be a connected cubic graph of order 12. We know from [15] that if |G| ≤ 12,

then cr(G) ≤ 2. If the connectivity of G is equal to one, the assertion follows immediately. So we

may assume that G is 2-connected. If cr(G) = 1 we have obviously g(G) = 1. If cr(G) = 2 and

the equality reaches via a straight line drawing G in the plane, in which one edge intersects two

another edges, the assertion also easily follows.

Assume that we have a drawing of G in the plane with crossings of two pairs of different

edges: e1 and e2, and f1 and f2. Deleting the edges e1, e2, f1 and f2 from G, we shall obtain a

subcubic multigraph H which has a natural embedding ϕ in the oriented plane. Denote by Π the

rotation system on G associated with the embedding ϕ. Now consider all possible configurations of

the induced planar embedding of the (multi)graph H and the positions of the deleted edges with

respect to it.

a) There is a face r of the embedding ϕ which contains two pairs of crossing edges, say e1 and

e2, and f1 and f2. Now there are principally three types of configurations. In the first case (see

Fig. 2), we can replace the (oriented) facial circuit dr of Π with three new circuits c1, c2, c3 where

c1 = (v5, v6, v8, v3, v4, v2, v3, v8, v7), c2 = (v1, v2, v4, v5, v7), c3 = (v6, v1, v7, v8) which contain four

crossing edges e1, e2 an f1, f2. All other facial circuits of Π remain without changes. As a result,

we shall obtain a rotation system Π′ on G of genus one.

The second and third types of configurations are shown in Fig. 3 and 4, respectively.

In the first case, we indicate the following circuits: c1 = (u1, u2, u3, u4, u5, u6),

c2 = (u12, u11, u10), c3 = (u3, u2, u9, u10, u11), c4 = (u5, u4, u7, u8).

In the second case we choose the following four circuits: c1 = (u3, u2, u1), c2 = (u6, u7, u8, u9), c3 =

(u12, u1, u2, u11, u10, u9, u8), c4 = (u2, u3, u4, u7, u6, u5, u11).

In both the cases we can complete the family consisting of four circuits to a rotation system R

on G which induces the six facial circuits.

An exceptional case of intersection pairs of crossing edges e1, e2 and f1 and f2 inside the face r
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is shown in Fig. 5. The following family of circuits in G determines a rotation system R of genus

one:

R : {c1 = (v1, v2, v3, v4), c2 = (v4, v3, v5, v6, u6), c3 = (v6, u2, u3, u5, u6), c4 = (u2, u1, u4, u3), c5 =

(u1, u2, v6, v5, v1, v4, u6, u5), c6 = (u1, u5, u3, u4, v2, v1, v5, v3, v2, u4)}.
b) There are two faces r1 and r2 of the embedding ϕ such that r1 contains the crossing of e1

and e2, and r2 contains the crossing of f1 and f2.

If r1 and r2 are disjoint, the existence of a rotation system Π′ on G with 6 circuits is obvious.

If r1 and r2 have a unique edge in common, we have a configuration shown in Fig. 6. There is a

rotation system R on G with 6 facial circuits. We indicate here only four circuits c1, c2, c3 and c4

which can be completed to a rotation system R of genus one. They are: c1 = (u2, u3, u4, u1), c2 =

(u1, u4, u5, u11, u12), c3 = (u11, u5, u6, u9, u10), c4 = (u9, u6, u7, u8).

Assume now that r1 and r2 have two edges in common (see Fig. 7).

In this case, we indicate a rotation system R on G with the following six circuits which induces

an embedding of G in the torus:

R : {c1 = (u2, u1, v2, v1), c2 = (v5, v4, u5, u4), c3 = (u1, u2, u3, u4, u5, u6), c4 = (v1, v2, v3, v4, v5, v6), c5 =
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(u2, v1, v6, u6, u5, v4, v3, u3), c6 = (u1, u6, v6, v5, u4, u3, v3, v2)}.
c) It can occur that H is a multigraph with three loops and the pairs of crossing edges of G

are situated in the outer face p of the embedding ϕ. We depict in Fig. 8 such a configuration.

In this case, one can easily find rotation systems R of G generating the six circuits. We indicate

only four circuits of the rotation R. They are: c1 = (u10, u9, u12, u11), c2 = (u11, u12, u3, u4), c3 =

(u4, u3, u2, u1), c4 = (u5, u6, u7). The rotation system R induces an embedding of G in the torus.

Note that the case when one pair of crossing edges of G is inside p and the other one is inside a

region bounded by a loop ofH is not admissible by the assumption that the graphG is 2-connected.¦
3. For l = 3 there are eight crossing minimal graphs. Here we count them according to [15]:

CNG3A, CNG3B,CNG3D,CNG3E, CNG3F,CNG3H, the graph GP (7, 2) and the Heawood

graph H (see Fig. 9 ).

Lemma 2.2 For any 3-crossing cubic graph G we have ed(G) ≤ 2.

Proof. The proof of the assertion uses drawing each such graph in the plane with 3 crossings. We

omit here technical details of this checking and left them to the reader as an exercise.¦
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Note also that g(CNG3A) = 2. The proof of this fact will be given in Section 3. It follows

that CNG3A is a minimal 2-genus graph. Note that the cyclical connectivity ζ(G) of the graph

CNG3A is equal to 3. By direct computation, all remaining seven 3-crossing graphs have genus

equal to one.

4. For l = 4 there are two minimal crossing graphs: 8-crossed prism graph Pr8 (see Fig.10a )

and the Möbius-Kantor graph MK (see Fig.10b ). By direct computation we have ed(MK) = 3

and ed(Pr8) = 2. Moreover it is known that the Möbius-Kantor graph MK is toroidal [15]. It is

not difficult to show that the graph Pr8 is also toroidal.

5. For l = 5 there are two minimal crossing graphs: the Pappus graph Pap (see Fig. 11a)

) and the graph CNG5B (see Fig. 11b) ). By direct computation, we have ed(Pap) = 3 and

ed(CNG5B) = 2. It is known that the Pappus graph is toroidal [15]. It is easy to show that

g(CNG5B) ≤ 2.

3 Additivity and minimal cubic graphs

In this section, we introduce two operations on graphs and establish some additivity properties of

parameters ed and g with respect to them, in the case of cubic graphs. The first operation is the

connected sum of graphs and the second one is the double (crossed) connected sum of them. We

also provide some upper bounds for the order of minimal edge deletion and genus graphs for a given
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Figure 9: The minimal 3-crossing graphs

value l of the parameters ed and g, respectively.

Let G1 and G2 be the 2-connected cubic graphs with distinguished edges e in G1 and f in G2.

Let u1, u2 be the vertices of e and v1, v2 the vertices of f , respectively. Remove from G1 the edge

e, and from G2 the edge f . Take the disjoint sum G of resulting graphs, G = (G1 − e) t (G2 − f),

and joint in G the pairs of vertices: u1 with v1, and u2 with v2, respectively. Denote the resulting

graph by G1 ? G2. We shall say that G1 ? G2 is the connected sum of the graphs G1 and G2 with

respect to the pair of edges e and f . Note G1 ? G2 is also 2-connected cubic graph.

Let G1 and G2 be any two 3-connected graphs. Take in G1 a pair of nonincedent edges (e1, e2),

and in G2 a pair of edges (f1, f2). Denote the vertices of e1 by u1, u2, and the vertices of e2

by v1, v2, respectively. Similarly, let s1, s2 be the vertices of f1, and t1, t2 the vertices of f2.

Delete in G1 the edges e1 and e2, and in G2 the edges f1 and f2. Then take a disjoint sum

G = (G1 − e1 − e2) t (G2 − f1 − f2) of two graphs and joint in G the following pairs of vertices:

u1 and s1, u2 and s2, v1 and t1, and v2 and t2, respectively. Denote the resulting 2-connected

graph G1 ∗G2 and call it a double connected sum of G1 and G2. The four edges joining the graphs

G1 − e1 − e2 and G2 − f1 − f2 are called the bridge edges of the graph G1 ∗ G2 and are denoted

8



a) b)

Figure 10: Graphs Pr8 and MK

Figure 11: The Pappus graph Pap and the graph CNG5B

h1, h2, h3 and h4 (see Fig. 12).

G1 G2

h
1

h
2

h3

h4

e
1

e
2

f1

f2

Figure 12: A Double connected sum of graphs G1 and G2

If in the above construction, we join the vertices u1, u2 with the vertices incident to different

edges f1 and f2 (then v1 and v2 are also joined with the vertices of different edges f1 and f2), the

resulting cubic graph is called the crossed connected sum of G1 and G2 and is denoted by G1]G2

(see Fig. 13).

It is clear that the operations of double connected sum and crossed connected sums are not

determined uniquely and the result G1 ∗G2 depends on the distinguished edges of two graphs.

It is naturally to ask whether the (orientable) genus is additive under taking of operations of

connected sum and double connected sum of two cubic graphs. In general, the answer is negative.

For example, we have g(K3,3) = 1 while g(K3,3 ?K3,3) = 1 6= 2. Similarly, the genus is not additive

subject to the operation of double connected sum of cubic graphs. The following assertions show
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that under certain conditions, the (orientable) genus is subadditive or additive with respect to the

operations defined above.

Theorem 3.1 Let G1 and G2 be 2-connected cubic graphs of genus k and l, respectively. Let e

and f be distinguished edges of G1 and G2, respectively and G1 ? G2 be the connected sum of G1

and G2. Then g(G1 ? G2) ≥ g(G1) + g(G2)− 1. Moreover if g(G1 − e) = k or g(G2 − f) = l, then

g(G1 ? G2) = k + l.

Proof. We start with proving the second assertion. Denote the two bridge edges of G1 ? G2 by

h1 and h2. The inequality g(G1 ? G2) ≤ k + l is rather obvious and follows from the definition of

connected sum of 2-manifolds. Let ϕ:G1 ? G2 → M be a minimal embedding of the graph G1 ? G2

in a closed orientable surface M . ϕ is a 2-cell embedding. Denote by Π the rotation system on

G1 ? G2 induced by ϕ. We have the following possibilities.

1). There are facial circuits c1 and c2 of Π such that c1 contains h1(twice) and c2 contains

h2(twice). The corresponding closed faces r1 and r2 bounded by c1 and c2, respectively, form two

handles in M , H1 and H2. Then χ(M) ≤ 0. Cutting M along the meridians m1 and m2 of H1 and

H2 and pasting the holes by discs, we shall obtain two disjoint closed orientable surfaces, M1 and

M2. This induces embeddings of the graph G1 − e in the surface M1 and the graph G2 − f in the

surface M2. We have g(M) = g(M1) + g(M2) + 1. Since g(G1 − e) = g(G1) or g(G2 − f) = g(G2),

the assertion follows.

2). There are two facial circuits c1 and c2 of Π each of which contains both the edges h1 and

h2. Fix an orientation on M . Let r1 and r2 be the faces of the embedding ϕ bounded by c1 and c2,

respectively. These two faces glued along the edges h1 and h2 form a handle. Removing from M

the (open) faces r1, r2 together with the edges h1 and h2, we shall obtain two disjoint 2-manifolds,

M ′
1 and M ′

2 with boundaries ∂M ′
1 and ∂M ′

2, respectively. Elimination of the edges h1 and h2 in

G1 ? G2 leads to a surgery of the rotation system Π and induces actually the rotation systems

Π1 and Π2 on the graphs G1 − e and G2 − f , respectively. More precisely, instead of the facial

circuits c1 and c2 in Π we have two cycles, d1 and d2, respectively, in Π1 and Π2. We thus have
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g(G1 ? G2) ≥ g(G1 − e) + g(G2 − f). Let M1 and M2 be the surfaces that realize geometrically

the rotation systems Π1 and Π2, respectively. The subgraphs G1 − e and G2 − f are embedded in

M1 and M2, respectively, in a natural way. By drawing the edge e in the face D1 bounded by the

circuit d1 and the edge f in the disc D2 bounded by the circuit d2, we obtain embeddings of G1

into M1 and G2 into M2. Therefore we have g(M) ≥ g(G1) + g(G2).

3). There is a unique facial circuit c of Π which contains both the edges h1 and h2 twice. Now we

proceed just as in the case 1). After surgery of the surface M we shall obtain two disjoint surfaces,

M1 and M2, such that g(M) = g(M1) + g(M2) + 1. Moreover, G1 has embedding in M1 or G2 has

embedding in M2. Since g(G1 − e) = g(G1) or g(G2 − f) = g(G2) we have g(M) ≥ g(G1) + g(G2)

completing the proof of the second assertion.

The first assertion follows directly from the above proof through the careful analysis of the cases

1)-3). ¦

Corollary 3.1 Let G1 be a 2-connected cubic graphs with the distinguished edges e. Let e′ be a

distinguished edge of the graph K3,3 and H = G1 ?K3,3 be a connected sum of G1 and K3,3 subject

to the edges e and e′. If e is inessential in G1, then g(H) = g(G1) + 1.

Corollary 3.2 If H is a minimal l-genus graph in the class of 2-connected graphs, then |H| ≤ 8l−2.

Theorem 3.2 Let G1 be a 3-connected cubic graph with the pair of distinguished edges e1 and e2

and G2 be a cyclically 4-edge connected cubic graph with the pair of distinguished edges f1 and f2.

Assume that g(G1 − e1) = g(G1) or g(G1 − e2) = g(G1) and g(G2 − f1 − f2) ≥ g(G2) − 1. Then

G1 ∗G2 is a 3-edge connected graph and g(G1 ∗G2) ≥ g(G1) + g(G2)− 1.

Proof. Let g be an embedding of the graph G1 ∗ G2 in a surface M of minimal genus. We can

cut the surface M along k disjoint nonparallel cycles c1, . . . , ck, k ≤ 4, which cross the bridge edges

h1, h2, h3 and h4. As a result, we obtain two (connected) submanifolds M1 and M2 such that

∂M1 = ∂M2 = tk
i=1ci and G2 − f1 − f2 is embedded in M1 and G2 − f1 − f2 is embedded in M2.

Pasting the connected components ci of ∂M1 by discs we obtain a closed surface M ′
1. In the same

way we obtain from M2 a closed surface M ′
2. By assumptions, we have g(M ′

1) ≥ g(G1) − 1 and

g(M ′
2) ≥ g(G2)− 1. Suppose that g(G) = g(G1) + g(G2)− 2. This can occur only if the following

equality folds: g(M) = g(M ′
1) + g(M ′

2) i.e. M ′
1 and M ′

2 are joined with one tube in M and the

number k of cycles ci is equal to one. But in this case we can draw the edge e1 and the edge e2 in

the disc D pasted to M1. This would give embeddings of both the graphs G1 − e1 and G1 − e2 in

the surface M ′
1 of genus g(G1)− 1 contradicting to the assumption.¦

Note also that an analogue of Theorem 3.4 holds also for crossed connected sum of cubic graphs.
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Let G1 be a 2-connected cubic graph with distinguished pair of non incident edges (e1, e2) where

e1 = (u1, v1), e2 = (u2, v2) and let G2 be a connected cubic graph with distinguished pair of edges

(f1, f2) where f1 = (u′1, v
′
1), e2 = (u′2, v

′
2). Assume that the following conditions are satisfied:

(i) g(G1) = k > 0 and g(G1 − e1) = k or g(G1 − e2) = k;

(ii) g(G2) = 1 and g(G2−f2−f1) = 1 or g(G2) = 0 and for any plain embedding of G2−f2−f1

there is no facial circuit c′ containing the four vertices u′1, v
′
1, u

′
2, v

′
2 and the only possibility that

the two facial circuits c′1, c
′
2 cover all these vertices is that one of them contains the vertices u′1, u

′
2

and the other one contains the vertices v′1, v
′
2.

For a moment, let G1]G2 denote the crossed connected sum of cubic graphs G1 and G2 in which

the vertices of the pair {u1, v1} are joined to the vertices of the pair {u′1, u′2} and the vertices of

the pair {u2, v2} to the vertices of the pair {v′1, v′2}.

Theorem 3.3 Let G1 and G2 be connected cubic graphs that satisfy conditions (i) and (ii). Assume

that G1 is 3-connected and G2 is cyclically 4-edge connected. Then G1]G2 is 3-connected graph and

g(G1]G2) = k + 1.

Proof. The first assertion follows from the definition of the crossed connected sum of cubic graphs

and its proof uses standard graph-theoretical tools. We omit here technical details.

It remains to prove the second assertion. Suppose contrary, that g(G1]G2) ≤ k. Let ϕ be a

minimal embedding of G1]G2 into an orientable surface M of genus k. Consider the embedding ψ

of the subgraph G1 − e1 − e2 into M induced by the embedding ϕ.

Let N(G1) be an open regular neighborhood of the polyhedron ψ(G1 − e1 − e2) in M . The

image ϕ(G2−f1−f2) is contained in one connected component of the 2-manifold M2 = M \N(G1),

say s. The component s cannot be a disc (i.e. a face of the embedding ψ). Indeed otherwise the

bridge edges of H would join the four vertices from G2 − f1 − f2 to four vertices of G1 − e1 − e2 in

a disc. But this is impossible by condition (ii). Therefore s contains tubes (i.e. is a submanifold

with nontrivial fundamental group). It follows that g(G1]G2) ≥ k.

It can occur that ∂s consists of one connected component, a circle c. Then M1 = cl(M \ s) is
a 2-manifold with the boundary ∂M1 = c. After gluing a disc D to M1 along the circle c we shall

obtain a surface T of genus k − 1. In this case we can draw the edge e1 (or the edge e2) in the

disc D and obtain an embedding of the graph G1 − e1 into the surface M1 contradicting with the

equality g(G1 − e1) = k. We thus exclude such a possibility.

Suppose now that s is glued to the rest of the surface M along two or more circles ci. The

number of circles cannot be bigger than two, otherwise the genus of M would be bigger than k,

contradicting to our assumption.
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Assume that s has two boundary components, c1 and c2. Then s is a cylinder and g(cl(M \s)) =
k − 1. There are two tubes t1 and t2 inside s which contain four bridge edges of the graph G1]G2.

A tube ti, i = 1, 2, cannot contain three bridge edges hl, otherwise one circle c
′
i would contain three

vertices from the set L = {u′1, v′1, u′2, v′2} and the other circle c′3−i contains the remaining vertex,

which is impossible by condition (ii).

Therefore the first tube t1, bounded by c1 on one side, contains two bridge edges h1 and h2

joining the ends of the edge e1 to the vertices, say u′1 and u′2, positioned on the facial circuit c′1
of G2 − f1 − f2. Similarly, the second tube t2, bounded by c2 on one side, contains the remaining

bridge edges h3 and h4 which join the ends of the edge e2 to the vertices v′1 and v′2, positioned

on the second facial circuit c′2 of G2 − f1 − f2 (see Fig. 14). In this case we can add the edges

e1 = (u1, v1) and e2 = (u2, v2) to the subgraph G1 − e1 − e2 and draw them in the 2-manifold

N(G1). It follows that the graph G1 admits embedding in a surface of genus k − 1 contradicting

to the condition (i). This completes the proof of the second assertion. ¦
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Figure 14:

Note that there are in G1]G2 at least two non incident edges which are inessential with respect

to genus.

Example 2. Consider the cubic graph H obtained from K3,3 by doubling an edge e. Instead of

e, we have two edges e1 and e2 (see Fig. 15). Take the edges e1 and e2 to be distinguished in H.

Removing from H the edges e1 and e2, we shall obtain a subcubic graph H ′.

It is clear that H ′ admits a unique planar embedding ρ and the graph H satisfies the condition

(i) (subject to the pair of edges e1 and e2). Moreover the graph H also satisfies the condition

(ii) (subject to the pair of edges e1 and e2). It follows that g(H]H) = 2. Note also that H]H is

cyclically 4-edge connected cubic graph.
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Figure 15: The cubic graph H

Lemma 3.1 The genus of cubic graph CNG3A is equal to 2.

Proof. Cut the graph CNG3A across four edges as shown in Fig. 16. We have a decomposition of

CNG3A into two planar graphs G1 and G2 such that G1 contains four semiedges e1, e2, e3 and e4

and G2 contains four semiedges f1, f2, f3 and f4.

e1
e2

f
1

f
2

3e e4

f
3

f4

G1

G2

Figure 16:

Suppose that the graph CNG3A is toroidal. Let ϕ denote embedding of this graph in the

torus T . Then ϕ induces embeddings ϕ1 and ϕ2 of the subgraphs G1 and G2, respectively, in the

torus. Let N1 be an open regular neighborhood of the graph ϕ1(G1) and N2 be an open regular

neighborhood of the graph ϕ1(G2) in the torus. Then G1 is contained in one connected component

t of the 2-manifold cl(T \N2) and G2 is contained in one connected component s of the 2-manifold

cl(T \ N1). The component t cannot be a disc since there is no planar embedding of G1 which

contains all semiedges inside the same region r. Similarly the component s is not a disc. Therefore

the only possibility to obtain embedding of the graph CNG3A in the torus is as follows. The

subgraph G1 is embedding into a sphere S1 with two holes, the subgraph G1 is embedding into

a sphere S2 with two holes and the spheres S1 and S2 are joining by two tubes τ1 and τ2 which

contain four pairs of glued semiedges: (e1, f1), (e2, f2), (e3, f3) and (e4, f4). By careful inspection
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all possibilities we can easily check that this is impossible.¦
Now starting from the graph CNG3A and the graph H in Example 2 and using Theorem 3.5

and Lemma 3.6, we can inductively construct a sequence of 3-connected cubic graphs Hl of order

8l with g(Hl) = l.

Corollary 3.3 If H is minimal l-genus graph in the class of 3-connected cubic graphs, then |H| ≤
8l.

Denote by χ′(G) the chromatic index of the graph G. A cubic graph G is called colorable if

χ′(G) = 3, otherwise G is called uncolorable (i.e. χ′(G) = 4) or a weak snark. A weak snark which

is cyclically 4-edge connected and whose girth is at least five is called a snark [13].

The Petersen graph is a simplest example of a snark. Using the operation of dot product (see

Fig. 17), one obtains from any two snarks of orders k and l, respectively, a a bigger snark of order

k+ l−2. Note that the dot product G1 ·G2 of two cubic graphs G1 and G2 is defined non uniquely.

u1
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v2
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e1

e2

1x

x2

y1

y2

u1

u2

v1

v2

1x

x2

y1

y2

y2

t

Figure 17: The dot product of two snarks

In [13], the authors consider different powers P k of the Petersen graph P and study their genus.

A kth power P k of the Petersen graph P is defined inductively: P k = P · P k−1, where · denote a

dot product of the cubic graphs. Since the dot product of two cubic graphs is defined non uniquely,

there are several powers Pn of the snark P for each natural number n ≥ 2.

In [13], the authors construct for each pair (k, n) of natural numbers k and n, where k ≤ n and

k, n ≥ 1, the powers Pn such that g(Pn) = k. Since the order of Pn is equal to 8n+ 2 we have the

following upper bound for the order of minimal l-minimal graphs: g(l) ≤ 8l+2. This estimation is

slightly weaker than the one given above.

This is an open problem to evaluate the number ed(Pn) of the powers Pn of the Petersen graph

P such that g(Pn) = k.

Now we consider how change the parameter ed of cubic graphs when we apply to them operations

of connected and double connected sum of graphs. A simple example shows that this parameter is

not additive under the connected sum of cubic graphs. It suffice to consider the graphs K3,3 ∗K3,3
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and K3,3 ?K3,3. Indeed we have ed(K3,3) = 1 and ed(K3,3 ?K3,3) = 1. Moreover ed(K3,3 ∗K3,3) = 1

for appropriate choice of pairs of the non incident edges in the first and second copies of K3,3.

However under certain conditions an analogue of additivity property holds also for the parameter

ed.

Let G be a cubic graph and e and f are two distinguished edges of G. We shall say that the edge

e is inessential (the pair {e, f} of edges is inessential) if ed(G−e) = ed(G) (ed(G−e−f) ≥ ed(G)−1,

respectively).

Theorem 3.4 Let G1 and G2 be two 2-connected cubic graphs with the distinguished edges e in G1

and f in G2, respectively. Let ed(G1) = k > 0 and ed(G2) = l > 0. Then ed(G1 ? G2) ≥ k + l − 1.

Moreover if ed(G1 − e) = k and ed(G2 − f) = l, then ed(G1 ? G2) = k + l.

Proof. Denote the vertices of e in G1 by v1 and v2 and the vertices of f in G2 by u1 and u2.

Put ed(G1 ? G2) = m. Let E = {e1, . . . , em} be the minimal set of edges in G1 ? G2 such that

G− E is planar. Assume that E contains neither the edge t1 = (u1, v1) nor the edge t2 = (u2, v2).

There is a path p1 joining u1 to u2 in G1 − {e, e1, . . . , em} or a path p2 in G2 − {f, e1, . . . , em}. It
follows that |E(G1 − e) ∩ E| ≥ k or |E(G2 − f) ∩ E| ≥ l. Moreover |E(G1 − e) ∩ E| ≥ k − 1 and

|E(G2 − f) ∩ E| ≥ l − 1, from what the inequality |E| ≥ k + l − 1 follows.

Assume that E contains one of the edges t1, t2. Then E contains at least k − 1 edges of G1 − e

and l − 1 edges of G2 − f , and the first assertion follows.

The second assertion of the theorem follows directly from the definitions of the connected sum

of cubic graphs and the minimal edge deletion set.¦

Theorem 3.5 Let G1 be a 3-connected cubic graph with ed(G1) = k > 0 and G2 a cyclically 4-edge

connected cubic graph with ed(G2) = l > 0. Let {e1, f1} be a pair of distinguished non incident

edges in G1 and {e2, f2} a pair of non incident distinguished edges in G2. Assume that in both the

pairs each edge is inessential. Then G1 ∗G2 is a 3-connected cubic graph and ed(G1 ∗G2) ≥ k + l.

Proof. Let e1 = (u1, u
′
1), f1 = (v1, v

′
1), e2 = (u2, u

′
2) and f2 = (v2, v

′
2). The bridge edges in

H = G1 ∗ G2 are the following: h1 = (u1, u2), h2 = (u′1, u
′
2), h3 = (v1, v2), h4 = (v′1, v

′
2). The

subgraph of the graph H formed by four bridge edges is denoted by B. Put G′
1 = G1 − e1 − f1 and

G′
2 = G1 − e2 − f2. Let R = {r1, . . . rs} be a minimal edge deletion set in H. The planar graph

H −R is connected. We have the following three possibilities:

1) R contains two or three bridge edges hi from B. Since ed(G′
1) ≥ k − 1 and ed(G′

2) ≥ l − 1,

it follows that ed(H) ≥ k + l.
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2) R does not contain any bridge edge hi. First note that if the subgraph G′
1−R is disconnected,

then ‖G′
1 ∩R‖ ≥ k. Indeed, suppose contrary that ‖G′

1 ∩R‖ ≤ k− 1. Then we can add some edge

ri from R to G′
1 −R to obtain a planar subgraph U1 of G′

1. But this contradicts to the assumption

that ed(G′
1) ≥ k − 1. Similarly, if the subgraph G′

2 −R is disconnected, then ‖G′
2 ∩R‖ ≥ l.

Consider a planar drawing g of the connected graph H − R. Let g1 and g2 be the planar

embeddings of the subgraphs G′
1−R and G′

2−R, respectively, induced by g. Now the proof of the

assertion reduces to considering the following three subcases.

(i) both the subgraphs G′
1 − R and G′

2 − R are connected. Since G′
1 − R is connected, the

plane subgraph D2 = (G′
2 ∪B)−R is contained in a face µ of the 2-cell embedding g1 of the plane

graph G′
1 −R. This means that the vertices u1, u

′
1, v1, v

′
1 of G′

1 −R are situated on the same facial

circuit c, the circuit that bounds the face µ. We can draw the edge e1 (or the edge f1) in the face

µ and obtain a planar embedding of the subgraph G1 − (f1 ∪ R) (see Fig. 18). Since the edge f1

is inessential in G1 we have ‖G′
1 ∩ R‖ ≥ k. In the same way we can prove that ‖G′

2 ∩ R‖ ≥ l. It

follows that ‖R‖ ≥ k + l.

u
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u
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v
1

v
1`

e1

f1

c

Figure 18:

(ii) both the subgraphsG′
1−R andG′

2−R are disconnected. Then ‖G′
2∩R‖ ≥ l and ‖G′

1∩R‖ ≥ k,

so ‖R‖ = k + l;

(iii) one of the subgraphs G′
1−R and G′

2−R is connected and the other is disconnected. Suppose

for instance that G′
1 − R is connected and G′

2 − R is disconnected. Since G′
2 − R is disconnected,

we have ‖G′
2 ∩R‖ = l. If ‖G′

1 ∩R‖ = k we have ‖R‖ = k+ l. Suppose that ‖G′
1 ∩R‖ = k− 1. The

plane subgraph D1 = (G′
1∪B)−R is contained in a connected region s of the planar embedding of

the graph G′
2−R. Note that s may not be a 2-cell. (see Fig. 19). In any case, we can draw the edge

e1 (or the edge f1) in the region s and obtain a planar embedding of the subgraph G1 − (R ∪ f1)

(the subgraph G1 − (R ∪ e1), respectively). But this means that ed(G1 − f1) = k− 1 contradicting

to the assumption. Therefore ‖G′
1 ∩R‖ = k and ‖R‖ = k + l.
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3) R contains one bridge edge hi. If ‖G′
2 ∩ R‖ ≥ l or ‖G′

1 ∩ R‖ ≥ k, the assertion follows.

Suppose that ‖G′
2 ∩R‖ = l− 1 and ‖G′

1 ∩R‖ = k− 1. By the same arguments as in the case 2), we

conclude that both the graphs G′
1−R and G′

2−R are connected. Let g be a planar embedding of the

connected graph H −R. The embedding g induces planar embeddings g1 and g2 of the subgraphs

G′
1−R and G′

1−R, respectively. Since G′
1−R is connected, the plane subgraph D2 = (G′

2∪B)−R

is contained in a face γ of the plane graph G′
2 −R. This means that three vertices of G′

1 −R from

the set {u1, u′1, v1, v′1} are situated on the same facial circuit c, the circuite that bounds the face γ.

Therefore we can draw the edge e1 or the edge f1 in the face γ which gives in planar embedding of

the subgraph G1 − (f1 ∪R) (G1 − (e1 ∪R), respectively). Since the edges e1 and f1 are inessential

in G1 we have ‖G′
1 ∩R‖ ≥ k, contradicting to our assumption.

We thus conclude that in any case ‖R‖ ≥ k + l. We have proved that ed(H) ≥ k + l. The first

assertion of the theorem is rather obvious. ¦
Note that any bridge edge of the graph H is inessential.

Theorem 3.9 can be used in constructing 3-connected or even cyclically 4-edge connected cubic

graphs G of order 6n such that ed(G) ≥ n for any natural number n > 0. We can start from the

Möbius-Kantor graph MK and pick one edge e in it. Replacing the edge e with two parallel edges,

e′ and e′′, we obtain a cubic graph G with two distinguish edges, e′ and e′′. Taking two copies

of G, the cubic graphs G′ and G1, and applying to them the operation of double connected sum,

we shall obtain a 3-connected cubic graph H2 of order 36. By Theorem 3.9, we have ed(H2) = 6.

Continuing this iteration process, we obtain a sequence of cyclically 4-edge connected cubic graphs

Hn of order 18n with ed(Hn) = 3n.

Corollary 3.4 If H is an l-edge deletion minimal graph in the class of 3-connected and cyclically

4-edge connected cubic graphs, then |H| ≤ 6l.
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Question. We provided above some upper bounds for the order of edge deletion minimal (cubic)

graphs and genus minimal (cubic) graphs. What about lower bounds for these graph parameters?
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