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Abstract

Let h: G̃ → G be a finite covering of 2-connected cubic (multi)graphs where G is 3-edge

uncolorable. In this paper, we find conditions under which G̃ is 3-edge uncolorable. As the

examples, we have constructed a regular 5-fold covering f : G̃ → G of uncolorable cyclically 4-

edge connected cubic graphs and a non-regular 5-fold covering g: H̃ → H of uncolorable cyclically

6-edge connected cubic graphs.

In [11], Steffen introduced the resistance of a subcubic graph, a characteristic that measures

how far is this graph from being 3-edge colorable. In this paper, we also study the relation

between the resistance of the base cubic graph and the covering cubic graph.

Keywords: uncolorable cubic graph, covering of graphs, voltage permutation graph, resistance,

nowhere 4-flow

Mathematics Subject Classification: 05C15, 05C10

1 Introduction

We shall consider only subcubic graphs i.e. graphs in which the degree of any vertex does not
exceed three. Let χ′(G) denote the chromatic index of the subcubic graph G. The graph G is
called colorable if χ′(G) is less than or equal to three, otherwise it is called uncolorable. An
uncolorable cubic graph is called a snark if it is cyclically 4-edge connected and its girth is at least
five.

There are known constructions that allow to produce new snarks starting from small cubic
graphs and applying to them some operations (for example, via the dot product, the vertex and
edge superpositions [7], Loupekine construction [3], gluing multipoles etc.)

The motivation of this paper is an attempt to understand whether the uncolorable cubic graphs
(in particular, snarks) can be obtained via covering maps i.e., starting from an uncolorable cubic
graph and lifting it via a covering map, and what are the conditions under which such lifting is

∗The work of the author was partially supported by the Polish Ministry of Science and Higher Education
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successful (see Section 1 for the definition of covering of graphs). Intuitively, a covering map of
graphs is a ”regular” homomorphism of them, so the question seems to be natural. Covering of
graphs are usually described via voltage graphs or permutation voltage graph construction [5].

The structure of this paper is the following. In Introduction, we define some notions and con-
cepts from topological graph theory, such as coverings of graphs, voltage graph, voltage permutation
graph, i.e. graphs enhanced with an additional structure which allow to describe coverings. For
details see also [5].

In Section 2 we study general conditions under which, for a given covering of cubic (multi)graphs,
the covering graph is to be uncolorable (Theorem 2.2). Theorem 2.2 relies basically on a standard
procedure of gluing several copies of the same multipole in some consistent way (actually in a cyclic
order) and allows to restate many other results on multiplying snarks in terms of topological graph
theory. On the other hand, we provide a nonstandard procedure for obtaining uncolorable graphs
by using 5-fold non-regular coverings of cubic graphs. Under certain conditions, this allows to
produce a big class of cyclically 6-edge connected snarks.

In Section 3, we study coverings of cubic graphsG with respect to resistance r(G), a parameter of
uncolorable cubic graphs that measures how far is a given cubic graph from being 3-edge colorable.
Another interesting measure of noncolorability of a bridgeless cubic graph G is its oddness, denoted
by ω(G). This is the minimum number of odd cycles that are in G after removing in it a 1-factor.
By definitions, we have obviously r(G) ≤ ω(G). The parameters r(G) and ω(G) were introduced
and studied by E.Steffen in [11]. The main problem was to construct for each natural number n a
cubic graph of minimum order such that r(G) = n(ω(G) = n, respectively). In an equivalent form,
the problem is to construct 2-connected cubic graphs G with the maximum ratio ρ(G) = r(G)/|G|
(µ(G) = ω(G)/|G|, respectively) or estimate these parameters asymptotically. In [6], J.Hägglund
has improved the previous results of Steffen. The best known estimates of ratios ρ(G) = r(G)/|G|
and µ(G) = ω(G)/|G| were given by R.Lukot’ka, E.Máčajová, J.Mazák, M.Škoviera in [8]. A
good survey on measures of noncolorability of cubic graphs is the recent paper [2] where some
improvement of the previous known results is also given.

In Section 3, we show that under certain conditions the resistance of a cubic graph increases
when passing from the base graph G to the covering graph G̃ (Theorem 3.1). We supply our
consideration with examples.

Finite coverings of cubic graphs were the powerful tool in proving the Heawood conjecture on
the chromatic number of a closed surface. By using them, one can construct triangular embeddings
of complete graphs Kn (in regular cases) or the complete graphs with a few edges removed into
closed surfaces of corresponding genus. The combinatorial schemes of such triangulations were
described by means of current and voltage graphs that are modeled over cubic graphs with the
assignment in a finite group H.

Definition 1.1 A surjective (continuous) map p: S̃ → S of topological spaces S̃ and S is called a
covering map(covering) if for each x ∈ S there exists a neighbourhood U(x) such that p−1(U(x))
is decomposed into disjoint sum

⊔
i∈I Ui of sets Ui such that for each i ∈ I, where I is a countable

set, the restriction p|Ui :Ui → U(x) is a homeomorphism. Then S̃ is called the covering space and
S the base space(or simply the base) of the covering p.

Moreover, restricted to graphs, we also require that the covering p: G̃ → G is a graph map. In the
following, we also require that both the covering graph and the base graph of the covering p: G̃ → G
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are finite and connected. In this case, the cardinal number n = |p−1(x)| does not depend on the
choice of x ∈ S. If n is a finite number, then p is called the n-fold covering map.

Note that if the covering space S̃ in the covering p: S̃ → S is not connected, then restricting p
to each connected component Si of S̃, we shall obtain the covering maps with the desired property.
A covering map p is called regular if the deck transformation group H acts on S̃ transitively [5].

Definition 1.2 Let G = (V,E) be a connected graph. We can replace each edge e ∈ E with the two
arcs, e′ and e′′, joining the same pair of vertices, but with opposite directions. As a result, we shall
obtain a directed graph G′ with the set of arcs E′. Let A be a finite group and let α:E′ → A be a
map which satisfies the following condition: for any e ∈ E, if α(e′) = h ∈ A, then α(e′′) = h−1 ∈ A.
The pair (G,α) is called then a voltage graph and the mapping α a voltage assignment on G.

Let G be a graph. By taking an orientation of edges of G we obtain an orgraph
−→
G with the

same of edges (which also are called the arcs of
−→
G). It is clear that the voltage assignment α on

G is uniquely determined by its values on the arcs of
−→
G . For this reason, when defining a voltage

assignment α:E′ → A, we indicate only the values of α on arcs from
−→
E .

Definition 1.3 The derived graph Gα is defined in the following way: V (Gα) = V×A and E(Gα) =
E × A. More precisely, if e = (u, v) is an arc from u to v in

−→
E , then the edge (e, g) of Gα joins

the vertices (u, g) and (v, g · α(e)).

The derived graphs Gα with the voltage assignment in a group H of order n, describe regular
n-fold coverings of the graph G as follows.

Proposition 1.1 [4] Every regular n-fold covering f : G̃ → G of graphs with the finite deck trans-
formation group H where G is connected and |H| = n is realized by a voltage graph (G,α) with a
voltage assignment in H.

In general, coverings of graphs are described by the following

Proposition 1.2 [4]Every n-fold covering f : G̃ → G of graphs is realized by a permutation voltage
graph with an assignment in the symmetric group Σn.

Here the permutation voltage assignment is some generalization of the voltage assignment de-
scribed before. Take an orientation of the graph G. A permutation voltage assignment in Σn is a
function β, defined on the arcs of the orgraph

−→
G , that assigns to each arc of

−→
G a permutation in Σn.

The pair (G, β) is called a permutation voltage graph. As in the case of the voltage assignment, we
assume that the function β is extended to the whole set of arcs of G′, so that the following condition
is satisfied: if e ∈ −→

G and β(e) = ω ∈ Σn, then β(e−1) = ω−1. The derived graph associated with a
permutation voltage graph (G, β) is denoted by Gβ.

Let c = (e1, . . . , ek−1, ek) be an oriented path in the voltage permutation graph (G, β). We
define the permutation β(c) ∈ Σn as follows: β(c) = β(e1) · β(e2) . . . β(ek). If c is an oriented cycle
in G, the element β(c) of the group Σn is defined up to conjugate.

In the following, we also consider graphs with semiedges (see also [?]). A multipole is a triple
M = (V ;E;S) where V = V (M) is the vertex set, E = E(M) is the edge set and S = S(M) is
the set of semiedges. Each semiedge is incident to exactly one vertex v of M and is denoted by
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(v) (the second end of semiedge contains no vertex of G); The last condition means that no loop
cannot serve as a semiedge of M . Semiedges are usually grouped into pairwise disjoint connectors
[7, 9]. A multipole with k semiedges is called k-pole. If S(M) = ∅, then M is simply a graph. We
say that the graph M ′ is obtained from the 2k-multipole M by identifying the pairs (vi) and (ui)
of semiedges where i = 1, . . . , k, if each such pair (vi) and (ui) is replaced with an edge {vi, ui} in
M ′.

Let M be a multipole and let [k] = {1, 2, . . . , k} be a set of colors. Let f :M → [k] be a mapping
that assigns to each e ∈ E ∪ S a color from [k] in such a way that for every vertex v in M the
ends incident with v (edges or semiedges) have pairwise distinct colors. Then f is called a k-edge
coloring of M . Therefore if M is a cubic multipole that has a k-edge coloring, then k ≥ 3. Moreover
if M is a loopless cubic multipole, then there exists an m-edge coloring of M with m ≤ 4. If there
is a 3-edge coloring of M , we say that M is colorable, otherwise it is uncolorable.

Sometimes it is convenient to consider the colors 1, 2, and 3 as nonzero elements of the group
Z2 × Z2 and redefine a 3-edge coloring of a graph or a multipole in terms of nowhere-zero flows.
For convenience of the reader, below we provide some relevant information on this subject.

Let G be a (multi)graph,
−→
G an orientation of G and H be an abelian group. Under an H-flow

on G we shall mean a nowhere-zero circulation f :
−→
E → H [1]. Moreover under a k-flow on G we

shall mean a nowhere-zero circulation f with values in the cyclic group Zk. We shall say that the
(multi)graph G has a k-flow if such k-flow exists for some orgraph (oriented multigraph)

−→
G with

the underlying (multi)graph G.
Nowhere-zero k-flows on a multipole are defined in the same way as for cubic (multi)graphs.

The only difference is that any k-flow on an l-multipole M has nontrivial sources(sinks) just at
the semiedges of M . We consider nowhere-zero flows on graphs and multipoles G with values in
Z2 × Z2. In this case, the orientation of edges (semiedges) of G is irrelevant. Recall that for cubic
(multi)graphs and multipoles G the following conditions are equivalent [1]:

a) G has a 4-flow;
b) G is 3-edge colorable.
Note that if M = (V,E, S) is a cubic multipole and ϕ:E ∪ S → Z2 × Z2 is a (nowhere zero)

4-flow on M , then
∑

e∈S ϕ(e) = 0 [7].
A simple graph or a multigraph that does not have a 4-flow is called 4-snark. Cyclically 4-edge

connected uncolorable cubic graphs with girth at least 5 are called snarks.
Below we provide an example of uncolorable graph G and its 3-fold cover graph G̃ which is

colorable.
Example 0. In Fig. 1, it is shown a 16-pole G′ embedded into the rectangular R. Gluing

together the pair of vertical sides and the pair of horizontal sides of R, we obtain a torus T . The
corresponding six pairs of ”vertical” semiedges (e1 and e2, a1 and a2, d1 and d2, b1 and b2, f1 and
f2, c1 and c2) and the pairs of ”horizontal” semiedges (s1 and s2, t1 and t2) in G are also identified.
As a result, we shall obtain a graph G embedded in the torus T (in which each pair of corresponding
semiedges of G′ is replaced with a unique edge of G).

The snark G is one of the third powers of the Petersen graph P (via the dot product), so we
simply write G = P 3 (see [10]).

Take the orientation of the six ”vertical” edges of P 3 (i.e. a, b, c, d, e and f) from bottom to
the top and an arbitrary orientation of the remaining edges. Cutting the graph P 3 along the six
”vertical” edges, we shall obtain a 12-pole H which has a natural embedding in a cylinder.

Fix a natural number n ≥ 2. Define the voltage assignment α:E(P 3) → Zn as follows: α(h) = 1
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Figure 1: The 16-pole G′

if h is one of six ”vertical” edges and α(h) = 0 in the remaining cases. The voltage graph (P 3, α)

defines the derived cubic graph P̃ 3. The corresponding n-fold covering map p: P̃ 3 → P 3 is cyclic.
The n-fold covering of graphs can be extended to a cyclic n-fold covering f : T̃ → T of tori in a

natural way. For n = 3 the n-fold covering graph P̃ 3 embedded in the torus T̃ is pictured in Fig.
2 (here we identify also the corresponding semiedges in the pairs).

Figure 2: The 3-fold covering graph P̃ 3 embedded in the torus T̃

Note that the multipole H has a 3-edge coloring in which all six bottom semiedges receive a
color x and all six top semiedges receive a color y where x 6= y. It follows that for any choice n ≥ 2

the covering cubic graph P̃ 3 is colorable. The details of the proof are left to the reader as an easy
exercise.
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2 Voltage graphs and nowhere-zero flows

The following is an immediate consequence of definitions of the n-flow and a covering map.

Proposition 2.1 Let p: G̃ → G be the m-fold covering map of graphs. If G has an n-flow (where
n ≥ 2) then G̃ also has an n-flow.

Proof. Let
−→
G be an orgraph with the underlying graph G and let f be an n-flow on

−→
G . Note

that the orientation of edges of the graph G is lifting uniquely to an orientation of edges in the
covering graph G̃. Let G̃′ denote the resulting orgraph with the underlying graph G̃. We define
the function f on E(G̃′) as follows. If e′ is an arc of

−→
G , we set f(e′) = f(e′) for each arc e′ in the

preimage p−1(e′). The ”lifted” function f on arcs of G̃′ defines obviously an n-flow of the graph G̃.
¦

In particular, if G has a 4-flow, then the covering graph G̃ also has a 4-flow. Moreover, if G is
an uncolorable cubic graph, then G̃ is also so. A similar statement holds for multigraphs.

Question 1. What are the conditions under which the covering graph of an uncolorable graph
is an uncolorable graph?

The class of uncolorable cubic graphs G obtained via covering maps of simple graphs and
multigraphs of degree 3 includes the well known subclasses of them such as Isaac’s flowers, Goldberg
snarks etc. Below we describe a general concept of these coverings.

Let G be a connected cubic (multi)graph that is a 4-snark and let p: G̃ → G be an n-fold
covering of connected graphs that is defined via a permutation voltage assignment λ:E(

−→
G) → Σn.

Moreover let E′ = {e1, e2, . . . , er} be a set of arcs in
−→
G (here we use the same notations ei for

arcs in
−→
G and corresponding edges in G). Cutting the edges e1, . . . , er in interior points, we shall

obtain a 2r-pole L′ with the r ”initial” semiedges e′1, e
′
2, . . . , e

′
r and the corresponding r ”terminal”

semiedges, denoted by e′′1, e
′′
2, . . . , e

′′
r . Assume that E′ satisfies the following conditions:

i) the multipole L′ is connected;
ii) for each oriented cycle c in G− E′ we have λ(c) = e where e is the identity permutation of

Σn.
Let λ(f)(j) denote the value of the permutation λ(f) at the number j. Now take the initial

semiedge e′1 in L′. Since L′ is connected, for each terminal semiedge e′′m where m = 1, . . . , r, there
is an oriented path wm joining e′1 to e′′m. Similarly, for each h = 1, . . . , r there is in L′ a path uh
joining e′1 to e′h (if h = 1, then the path u is trivial). For each i = 1, . . . , n put λ′′

m(i) = λ(wm)(i).
Here in λ(wm) we count the value of λ at the oriented edges and the output semiedge of the path
wm. Moreover for each h = 1, 2, . . . , r put λ′

h(i) = λ(uh)(i). Here in λ(uh) we count the value of λ
at the oriented edges of the path uh only. In particular, λ′

1(i) = 1. By condition ii), the permutation
λ′′
m does not depend on the choice of the path wm. Similarly, the permutation λ′

h does not depend
on the choice of the path uh. It follows that the numbers λ′′

m(i) and λ′
h(i) are well defined for each

i = 1, . . . , n and m = 1, . . . , r and h = 1, . . . , r. In particular, we have λ′
1(i) = i.

We shall say that the set E has the property iii) if for each i = 1, . . . , n and each m = 1, . . . , r
it holds the following: λ′′

m(i) = λ′
m(λ′′

1(i)) (see Fig. 3).
We can associate with L′ a transition digraph D′ as follows. If L′ is uncolorable we put formally

D′ = ∅. Assume that L′ is colorable. An r-tuple v = (x1, . . . , xr) ∈ (Z2 × Z2)
r is an vertex of D′

if and only if there exists 4-flow on L′ with the input data (x1, . . . , xr) at the sequence of initial
semiedges e′1, . . . , e

′
r or this output data at the sequence of terminal semiedges e′′1, . . . , e

′′
r of L′.

There is an arc in D′ that joins the vertex v = (x1, . . . , xr) to the vertex w = (y1, . . . , yr) if and
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Figure 3: Condition iii) for r = 3; here λ′′
1(i) = j, λ′′

2(i) = l, λ′′
3(i) = t, λ′

2(j) = l, λ′
3(j) = t

only if there is a 4-flow on L′ with the input data (x1, . . . , xr) and the output data (y1, . . . , yr).
Note that since G is assumed to be uncolorable, the digraph D′ is loopless.

Theorem 2.2 Assume that there exists a set E of edges in G which satisfy the above conditions i)
- iii). Then Gλ is colorable if and only if there is in D′ a closed oriented walk of length n.

Proof. Let E′ be the set of arcs in
−→
G with the properties under assumption. Cutting in G all

edges e from E′, we shall obtain a multipole L′.
By the conditions i) and ii), the multipole p−1(L′) is decomposed into n disjoint (isomorphic)

copies L1, . . . , Ln of the multipole L′. It may occur that L′ is not 3-edge colorable i.e. does not
have a 4-flow. It follows immediately that p−1(L′) is not 3-edge colorable, so the graph Gλ is also
uncolorable. Assume now that L′ is 3-edge colorable.

Let (e′i, 1), . . . , (e
′
i, n) be the lifts of the semiedge e′i under the covering map p, where i = 1, . . . , r.

Similarly, for each i = 1, . . . , r let (e′′i , 1), . . . , (e
′′
i , n) be the lifts of the semiedge e′′i under the covering

map p. By iii), the covering graph Gλ can be obtained from multipoles L1, . . . , Ln by identifying
consequently the corresponding pairs of their semiedges. More precisely, we identify the semiedges
(e′′m, a) and (e′m, b) of the corresponding multipoles Lx and Ly if λ(em)(a) = b. The condition iii)
guarantes us that if some terminal semiedge (e′′m, a) of the copy Lx is glued to an initial semiedge
(e′m, b) of the copy Py, then any other terminal semiedge of Lx is identified with some initial
semiedge of the copy Ly. This means that after the identification process, the joined multipoles Lx

in Gλ are decomposed into cycles. But, by the assumption, the graph Gλ is connected, so we have
actually one such a cycle. It follows that p:Gλ → G is a kind of ”cyclic” coverings of (multi)graphs.

The existence in D′ a closed (oriented) walk w of length n means that one can find 4-flows
ϕ1, ϕ2, . . . , ϕn on the multipoles L1, L2, . . . , Ln, respectively, that are consistent on the output/input
data for each pair Lx and Ly of multipoles such that the terminal semiedges of Lx are identified
with the corresponding initial semiedges of Ly. Combining all ϕi in the total cyclic sequence, we
shall obtain a 4-flow ϕ of the covering graph Gλ.

Since the multipoles Lx are glued to each other in Gλ cyclically (with a cycle of length n), the
inverse implication is rather obvious.¦

Theorem 2.2 describes cyclic coverings of cubic graphs which allow to obtain a wide class
of snarks (which includes Isaac’s flowers, Goldberg snarks and many other uncolorable graphs).
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Now we consider some coverings of cyclically 4-edge connected and cyclically 6-edge connected
uncolorable graphs which do not overlap by Theorem 2.2.

Example 3. Let G be an uncolored cubic graph and let e, f be the non incident edges of G.
Cutting the edges e and f in G, we shall obtain a 4-pole L with two pairs of semiedges, e′ and e′′,
and f ′ and f ′′, respectively. Then either L does not have any 4-flow or L admits a nowhere-zero
flow ξ in Z2 × Z2 with the following property (*):

ξ has the only nontrivial sources at four semiedges, i.e. ξ(e′) = x, ξ(e′′) = y and ξ(f ′) =
x, ξ(f ′′) = y or ξ(e′) = x, ξ(e′′) = y and ξ(f ′′) = x, ξ(f ′) = y where x, y ∈ Z2 × Z2, x, y 6= 0 and
x 6= y.

Take an orientation of the edges of the graph G and denote the resulting orgraph by
−→
G . Let

β:
−→
G → Σ5 be a permutation voltage assignment defined in the following way: β(e) = (12345) and

β(f) = (13524) and β(h) = (1)(2)(3)(4)(5) for any other arc h of the
−→
G . The voltage graph (G, β)

defines the 5-fold covering map p:Gβ → G in which the covering graph Gβ is connected.

Proposition 2.3 The covering p:Gβ → G is regular and the cubic graph Gβ is uncolorable. More-
over if G is cyclically 4-edge connected, and e and f lie on some disjoint circles of G, then Gβ is
also cyclically 4-edge connected.

Proof. First note that the set of arcs E′ = {e, f} satisfies the conditions i) and ii) of Theorem
2.2. It follows that the 20-multipole p−1(L) is decomposed into 5 disjoint copies Li of the the 4-pole
L.

Let e1, . . . , e5 be the lifts of the edge e and f1, . . . , f5 the lifts of the edge f via the covering
map p. Moreover let e′1, . . . , e

′
5 and e′′1, . . . , e

′′
5 be the lifts of semiedges e′ and e′′, respectively, and

f ′
1, . . . , f

′
5 and f ′′

1 , . . . , f
′′
5 be the lifts of semiedges f ′ and f ′′, respectively. The covering graph

Gβ can be obtained in the following way. Take the five copies L1, L2, . . . , L5 of the multipole L.
Then identify the 5 pairs of semiedges e′i and e′′j according to the permutation β(e) = (12345) and
the 5 pairs of semiedges f ′

k and f ′′
t according to the permutation β(f) = (13524) (see Fig. 4).

Identifying the first five pairs of semiedges results in the edges e1, e2, . . . , e5 and the second five
pairs of semiedges results in the edges f1, . . . , f5 of the graph Gβ.

The deck transformation group of the covering p is Z5 which acts on Gβ transitively. More
precisely, the generator 1 of Z5 shifts the edge ei to the edge ei+1 and the edge fj to the edge fj+1

for each i, j = 1, . . . , 5. Moreover 1 permutes the components Li of p
−1(L) cyclically. It follows

that p is a regular 5-fold covering of connected topological graphs.
If L does not have any 4-flow it follows immediately that Gβ is uncolorable. If L admits a

nowhere zero Z2 ×Z2-flow, one can directly check that no such flow can be extended to a 4-flow of
the covering graph Gβ. We omit here the technical details of this checking (which relies actually
on the property (*) of the 4-poles Li, i = 1, . . . , 5).

If the edges e and f of G lie on some disjoint cycles and the permutations β(e) and β(f) are
cyclic, then the covering graph Gβ is cyclically 4-edge connected. ¦

Below we provide an example of non regular 6-fold covering map of connected uncolorable cubic
graphs.

Example 4. Let G be uncolorable cyclically 4-edge connected cubic graph and let e, f, h be
nonincident edges of G. Cut the edges e, f and h of G in internal points. As a result, we obtain
a 6-pole M with corresponding pairs of semiedges , e′ and e′′, f ′ and f ′′, h′ and h′′, respectively.
Assume that cutting any two of the edges e, f and h produces an uncolorable 4-pole. Then either 1)
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Figure 4: Obtaining the graph Gβ by gluing the five copies of the 4-pole L

M does not admit 3-edge coloring, or 2) M has a 3-edge coloring ξ with the following combination
of (nonzero) colors x, y, z ∈ Z2 × Z2, x, y, z 6= 0 at three pairs of semiedges:

(**) ξ(e′) = x, ξ(e′′) = y and ξ(f ′) = y, ξ(f ′′) = z and ξ(h′) = z, ξ(h′′) = x,
or any other combination obtained from the given one by permutation of colors in corresponding

pairs of semiedges. Note that, in the case 2), the distribution of colors such that the pair of semiedges
e and e′ (or any other pair of two corresponding semiedges) get the same color is not admissible
since r(G) ≥ 3. For example, the following distribution of colors is admissible: ξ(e′) = x, ξ(e′′) = y
and ξ(f ′′) = z, ξ(f ′) = y and ξ(h′) = z, ξ(h′′) = x.

Consider a 5-fold covering of the graph G given by the permutation voltage assignment ϕ with
values in the symmetric group Σ5 on the orgraph G′ as follows (see Fig. 5).

Put ϕ(e) = (12345), ϕ(f) = (153)(24), ϕ(h) = (142)(35). For the remaining edges g put ϕ(g) =
(1)(2)(3)(4)(5).

Proposition 2.4 The covering p:Gϕ → G is nonregular and the cubic graph Gϕ is uncolorable.
Moreover if the graph G is a cyclically 6-edge connected and the edges e, f and h are contained in
three disjoint circles of G, then Gϕ is also uncolorable cyclically 6-edge connected cubic graph.

Proof. Note that the set of edges E′ = {e, f, h} satisfies the conditions i) and ii) of Theorem
2.2. It follows that the multipole p−1(M) is decomposed into 5 disjoint copies Mi, isomorphic to
the 6-pole M .

Let e1, . . . , e5 be the lifts of the edge e, f1, . . . , f5 be the lifts of the edge f and h1, . . . , h5 be
the lifts of the edge h via the covering map p. Moreover let e′1, . . . , e

′
5 and e′′1, . . . , e

′′
5 be the lifts

of semiedges e′ and e′′, respectively, f ′
1, . . . , f

′
5 and f ′′

1 , . . . , f
′′
5 be the lifts of semiedges f ′ and f ′′,

and h′1, . . . , h
′
5 and h′′1, . . . , h

′′
5 be the lifts of semiedges h′ and h′′, respectively. The covering graph

Gϕ can be obtained in the following way. Take the five copies M1,M2, . . . ,M5 of the multipole
M . Then identify the 5 pairs of semiedges e′i and e′′j according to the permutation ϕ(e) = (12345),

9
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Figure 5: Obtaining the graph Gϕ by gluing the five copies of the 6-pole M

the 5 pairs of semiedges f ′
k and f ′′

t according to the permutation ϕ(f) = (153)(24) and the 5 pairs
of semiedges h′k and h′′t according to the permutation ϕ(h) = (142)(35) (see Fig. 5). Identifying
the first five pairs of semiedges results in the edges e1, e2, . . . , e5, the second five pairs of semiedges
results in the edges f1, . . . , f5 and the third five pairs of semiedges results in the edges h1, . . . , h5
of the graph Gϕ.

The deck transformation group of the covering p is trivial, so this covering is nonregular.
If M does not have any 4-flow it follows immediately that Gϕ is an uncolorable graph. If M

admits a nowhere zero Z2 ×Z2-flow, we can directly check that no such flow can be extended to a
4-flow of the covering graph Gϕ. The proof of the last fact is by counting all possible subcases of
extending a coloring of one copy of the 6-pole M to the whole covering graph and uses the property
(**) of multipoles Mi, i = 1, . . . , 5. We omit here the technical details.

If the edges e, f and h of G lie on disjoint cycles and the permutations ϕ(e) , ϕ(f) and ϕ(h)
are cyclic, the covering graph Gϕ is cyclically 6-edge-connected. ¦

3 Coverings of cubic graphs and resistance

In [11], Steffen introduced the parameter r(G) of an uncolorable cubic graph G without bridges. It
measures how far G is from being 3-edge colorable and is called the resistance of G. More precisely,
r(G) = min{|F | : F ⊂ E(G) such that G − F is 3-edge colorable} (here we slightly modify the
original definition of the parameter r(G) but in an equivalent form). This parameter is related to
another measure of noncolorability, the oddness ω(G) of G, which is the smallest possible number
of odd circuits in 2-factors of G (see [6, 11]). In particular, r(G) ≤ ω(G) for any cubic graph G.

It is not difficult to see that the number r(G) is equal to the minimal number of edges in the
cubic graph G, say e1, . . . , ek, such that cutting all them in interior points results in a 2k-pole which
has a 4-flow (with sources in the semiedges).

It follows directly from definitions that an analogue of Proposition 2.3 holds true for uncolorable
cubic graphs G with r(G) ≥ 3 and for an arbitrary choice of cyclic permutations β(e) and β(f) in
Σn with n ≥ 2.

Let us consider several examples of snarks and indicate their resistance.
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Example 5. Let P be the Petersen graph, and P 3 the third power of P pictured in Fig. 1. In
Fig. 6, it is shown the snark G26 of order 26 embedded in a torus (see [10]).

By direct computation, we have r(P ) = 2, r(P 3) = 2 and r(G26) = 2.

Figure 6: The snark G26 embedded in torus

The following theorem allows to construct uncolored graphs G with an arbitrary value of resis-
tance.

Theorem 3.1 Let G be a connected bridgeless uncolored graph with r(G) = k. Let (G,µ) be a
permutation voltage graph with an assignment µ in the symmetric group Σn, G

µ be the corresponding
covering graph and let E = {e1, e2, . . . , el} be a subset of edges of G with l ≤ k− 1. Assume that E
satisfies the following conditions:

i) the graph H = G−E is connected;
ii) for each oriented cycle c in the graph H we have µ(c) = e where e is the trivial permutation

in Σn.
Then the bridgeless cubic graph Gµ is uncolored. Moreover r(Gµ) ≥ (k − l)n.

Proof. First assume that the covering graph Gµ is connected. Let L be the 2l-pole associated with
the set of edges E = {e1, . . . , el} in G, that is L is obtained from G by cutting the edges e1, . . . , el in
interior points. It follows from i) and ii) (see the proof of Theorem 2.2) that the multipole p−1(L)
is decomposed into n disjoint (isomorphic) copies Li of the multipole L. Moreover the covering
graph Gµ can be obtained from multipoles L1, . . . , Ln by identifying the corresponding pairs of their
semiedges in accordance with the permutation values µ(ei) for ei ∈ E. It follows that the graph
p−1(H) is decomposed into n disjoint components H1,H2, . . . ,Hn each of which is isomorphic to
H. It is clear that each graph Hi is obtained from the multipole Li by removing all semiedges of it.

Suppose that r(Gµ) = t < (k − l)n. Then there are edges e′1, . . . , e
′
t of G

µ such that the graph
U = Gµ − {e′1, . . . , e′t} is 3-edge colorable. Let ϕ be the corresponding 3-edge coloring of U . Then
ϕ descends obviously to a proper 3-edge coloring ϕi of each subgraph Ui = Hi −{e′1, . . . , e′t} where
i = 1, . . . , n. Since Ui is 3-edge colorable and r(G) = k ≥ 2, it follows that the graph Ui is obtained
from the graph Hi by removing at least k− l edges, i = 1, . . . , n. This means that the U is obtained
from G by eliminating at least (k− l)n edges, i.e. r(Gµ) ≥ (k− l)n, contradicting our assumption.

If Gµ is disconnected, we can restrict the covering map p:Gµ → G to each connected component
of Gµ and then argue in the same way as in the first case. Now the assertion follows. ¦

Note that by Proposition 1.1, for any n-fold covering p:Gµ → G of cubic graphs with r(G) = k,
we have r(Gµ) ≤ kn.
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Corollary 3.1 Let G be a connected bridgeless uncolorable graph with r(G) = k and
−→
G be an

orientation of G. Moreover let (G,µ) be a voltage graph with a voltage assignment µ:E(
−→
G) → A

in a finite group A of order m such that µ takes the only nontrivial values at l arcs of
−→
G with

l ≤ k − 1. Then the covering cubic graph Gµ is an uncolorable graph with r(Gµ) ≥ (k − l)m.

Proof. Let E = {e1, e2, . . . , el} be the edges of G with nontrivial values of the voltage assignment
µ. If the graph G− {e1, e2, . . . , el} is connected, the assertion is a direct consequence of Theorem
3.2. If G− {e1, e2, . . . , el} is disconnected, we can replace the set E with a smaller subset E′ ⊂ E
such that G−E′ is connected and the condition iii) of Theorem 3.2 is satisfied. Now the assertion
follows from the proof of Theorem 3.2. ¦

Example 6. Consider the 5-fold covering of the graph H2 depicted in Fig. 7. This uncolorable
graph is due to [8].

Figure 7: The cubic graph H2

In [8], it was shown that H2 is a unique smallest uncolorable graph with oddness 4 and with
edge-cyclic connectivity 3. The given graph is obtained by gluing together three copies of the 3-pole
P3 [8], where the multipole P3 is shown in Fig. 8.

Figure 8: The multipole P3

The order of H2 is equal to 28. It is not difficult to show that r(H2) = 3. We distinguish

in H2 three edges, e, f and g, and consider the 5-fold covering map p:Hβ
2 → H2 defined via the

permutation voltage assignment β with values in Σ5 as follows: β(e) = (12345), β(f) = (153)(24),
β(g) = (142)(35) and β(h) = (1)(2)(3)(4)(5) for any other arc h of the orgraph

−→
H1. It is clear that

r(Hβ
2 ) ≥ 3 · 5 since in order to obtain from Hβ

2 an uncolored (subcubic)graph we have to delete at

least one edge in each copy P i
3, i = 1, 2, . . . , 15 of the 3-pole P3. Since the number r(Hβ

2 ) cannot

exceed 3 · 5, it follows that r(Hβ
2 ) = 15. Note that edge-cyclic connectivity of Hβ

2 is also 3.

12



References

[1] R.Diestel, Graph Theory (Fourth edition), Springer, 2010.

[2] M.A.Fiola, G.Mazzuoccolo, E.Steffen, On measures of edge-uncolorability of cubic graphs: A
brief survey and some new results, arXiv:1702.07156v1 [math.CO] 23 Feb 2017.

[3] M.Ghebleh, The circular chromatic index of Goldberg snarks, Discrete Math. 307, 2007,
pp.3220-3225.

[4] J.L.Gross, T.W.Tucker, Generating all graph coverings by permutation voltage assignments,
Discrete Math. 18, 1977, pp.273-283.

[5] J.L.Gross, T.W.Tucker, The topological graph theory, Dover Publications Inc., New York,
2012.
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