MATEMATYKA DYSKRETNA

www.ii.uj.edu.pl/preMD/

Mirko HORŇÁK, Mariusz MESZKA and Mariusz WOŹNIAK
 Palette index of regular complete multipartite multigraphs

Preprint Nr MD 091

(otrzymany dnia 11.09.2017)

Kraków 2017

Redaktorami serii preprintów Matematyka Dyskretna są:
Wit FORYŚ (Instytut Informatyki UJ, Katedra Matematyki Dyskretnej AGH)
oraz
Mariusz WOŹNIAK (Katedra Matematyki Dyskretnej AGH)

Palette index of regular complete multipartite multigraphs

Mirko Horňák * Mariusz Meszka ${ }^{\dagger}$ Mariusz Woźniak \ddagger

September 11, 2017

Abstract

Let G be a multigraph, C a set of colors and $f: E(G) \rightarrow C$ a proper edge coloring of G. The palette of a vertex $v \in V(G)$ is the set $S_{f}(v)=\{f(v w): v w \in E(G)\}$. The palette index of G is the minimum cardinality of the set $\left\{S_{f}(v): v \in V(G)\right\}$ taken over all proper edge colorings of G. In the paper there is determined the palette index of $\lambda K_{p \times q}$, the complete multipartite multigraph with p parts of cardinality q and with the constant edge multiplicity equal to λ.

Let G be a multigraph and let $f: E(G) \rightarrow C$ be a proper edge-coloring of G, where C is a set of colors. The minimum number of colors needed to properly color edges of G is called the chromatic index of G and is denoted by $\chi^{\prime}(G)$. Edges colored with the same color form a color class. Due to Vizing [6] we know that $\chi^{\prime}(G) \leq \Delta(G)+\mu(G)$, where $\mu(G)$ is the maximum number of edges in G with the same endvertices. So, if G is a graph, then either $\chi^{\prime}(G)=\Delta(G)$ or $\chi^{\prime}(G)=\Delta(G)+1$ and G is called either class 1 or class 2.

Let $l, m \in \mathbb{Z}$. By $[l, m]$ we denote the integer interval of all integers z satisfying $l \leq z \leq m$. If $m \geq 2$, we use $|l| m \mid$ to denote the unique

[^0]$k \in[0, m-1]$ satisfying $k \equiv l(\bmod m)$. If G_{1}, G_{2} are vertex-disjoint graphs, the join of G_{1} and G_{2} is the graph $G_{1} \oplus G_{2}$ with $V\left(G_{1} \oplus G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \oplus G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{x_{1} x_{2}: x_{1} \in V\left(G_{1}\right), x_{2} \in V\left(G_{2}\right)\right\}$. We use the standard notation $K_{p \times q}$ for a complete balanced p-partite graph with each part of cardinality q. Let $V\left(K_{p \times q}\right)=\bigcup_{i=1}^{p} V_{i}$, where $V_{i} \cap V_{j}=\emptyset$ whenever $i \neq j$. Let $V_{i}=\left\{v_{i, j}: j \in[1, q]\right\}$ for each $i \in[1, p]$. Let X be a finite set. By K_{X} we denote the complete graph with the vertex set X; similarly, D_{X} is the discrete (edgeless) graph with the vertex set X. If $|X| \geq 3$ and C is an arbitrary (but fixed) cycle with $V(C)=X$, then C_{X} will be the graph with $V\left(C_{X}\right)=X$ and $E\left(C_{X}\right)=E(C)$.

The chromatic index of complete multipartite graphs was determined by Hoffman and Rodger [2] using the notion of an overfull graph, i.e., a graph G with $|E(G)|>\Delta(G)\lfloor|V(G)| / 2\rfloor$.

Theorem 1. The chromatic index of a complete multipartite graph K is $\Delta(K)$ if K is not overfull and $\Delta(K)+1$ if K is overfull.

The following result concerning the chromatic index of regular graphs was obtained by De Simone and Galluccio [5]:

Theorem 2. If G is a k-regular graph of even order n with $k \geq \frac{n}{2}$ and there are graphs G_{1}, G_{2} with $G_{1} \oplus G_{2} \cong G$, then G is a class 1 graph.

The palette of a vertex $v \in V(G)$ with respect to an edge coloring f of G is the set $S_{f}(v)$ of colors (under f) of edges of G incident to v. For a given multigraph G, the minimum number of palettes taken over all possible proper edge colorings of G is called the palette index of G and is denoted by $\check{s}(G)$. A coloring for which this minimum is attained is called palette-minimum.

The palette index was introduced in Horňák et al. [3] and further investigated in Bonvicini and Mazzuoccolo [1]. The next three basic results for this graph invariant were proven in [3].

Proposition 3. The palette index of a graph G is 1 if and only if G is regular and class 1.

Lemma 4. If a graph G is regular, then $\check{s}(G) \neq 2$.
Theorem 5. Let n be a positive integer. Then

$$
\check{s}\left(K_{n}\right)= \begin{cases}1 & \text { if } n \equiv 0(\bmod 2) \text { or } n=1, \\ 3 & \text { if } n \equiv 3(\bmod 4), \\ 4 & \text { if } n \equiv 1(\bmod 4) \text { and } n \geq 5 .\end{cases}
$$

Proposition 3 and Lemma 4 can easily be extended to multigraphs. Indeed, in the former case there is (almost) nothing to do and in the latter one the proof works for multigraphs in the same way as for graphs.

Proposition 6. The palette index of a multigraph G is 1 if and only if G is regular and class 1.

Lemma 7. If a multigraph G is regular, then $\check{s}(G) \neq 2$.
Let λK_{n} stand for a complete multigraph on n vertices in which the multiplicity of each edge is equal to λ.

Lemma 8. If λ, n are positive integers, then $\check{s}\left(\lambda K_{n}\right) \leq \check{s}\left(K_{n}\right)$.
Proof. Let $f: E\left(K_{n}\right) \rightarrow C$ be a palette-minimum coloring of a complete graph K_{n}. To each color $c \in C$ we assign λ "private" colors $c_{i}, i \in[1, \lambda]$, and we use all of them to color λ parallel edges with endvertices x and y whenever c is the color of the edge $x y$ in K_{n}. The constructed coloring $f_{\lambda}: E\left(\lambda K_{n}\right) \rightarrow C_{\lambda}$ with $C_{\lambda}=\bigcup_{c \in C}\left\{c_{i}: i \in[1, \lambda]\right\}$ then satisfies $S_{f_{\lambda}}(x)=$ $\bigcup_{c \in S_{f}(x)}\left\{c_{i}: i \in[1, \lambda]\right\}$ for each $x \in V\left(\lambda K_{n}\right)=V\left(K_{n}\right)$, and hence forms $\check{s}\left(K_{n}\right)$ distinct palettes.

In the next theorem we determine the palette index of complete λ-multigraphs.

Theorem 9. Let λ, n be positive integers. Then

$$
\check{s}\left(\lambda K_{n}\right)= \begin{cases}1 & \text { if } n \equiv 0(\bmod 2) \text { or } n=1, \\ 4 & \text { if } n \equiv 1(\bmod 4) \text { and either } \lambda \equiv 1(\bmod 2) \text { or } n=5, \\ 3 & \text { otherwise } .\end{cases}
$$

Proof. By Proposition 6, Lemma 7 and Lemma 8, the assertion immediately holds if $n \not \equiv 1(\bmod 4)$. Henceforth we assume that $n \equiv 1(\bmod 4)$; in such a case $3 \leq \check{s}\left(\lambda K_{n}\right) \leq 4$.

If either $\lambda \equiv 1(\bmod 2)$ or $n=5$, proceeding by the way of contradiction we suppose that $\check{s}\left(\lambda K_{n}\right)=3$. Let f be a palette-minimum coloring of λK_{n} and let $P_{i}, i=1,2,3$, be three distinct palettes created by f. Let Y_{i} be the set of all vertices of λK_{n} with the palette $P_{i}, i=1,2,3$. Clearly, $\left|P_{i}\right|=\lambda(n-1)$ and $\left|P_{i} \backslash P_{j}\right|=\left|P_{j} \backslash P_{i}\right|$ if $i, j \in[1,3], i \neq j$. Obviously, since n is odd, there is no color belonging to all three palettes. Moreover, $\left|Y_{i}\right|+\left|Y_{j}\right|$ is even whenever $i, j \in[1,3], i \neq j$. Thus cardinalities of all Y_{i} 's are of the same
parity, and then each $\left|Y_{i}\right|$ is odd. Hence each color belongs to exactly two palettes. Therefore, if $\{i, j, k\}=[1,3]$, then $P_{i} \backslash P_{j}=P_{i} \cap P_{k}, P_{j} \backslash P_{i}=P_{j} \cap P_{k}$, $P_{k}=\left(P_{i} \cap P_{k}\right) \cup\left(P_{j} \cap P_{k}\right)$ and $\left|P_{i} \cap P_{k}\right|=\left|P_{i} \backslash P_{j}\right|=\left|P_{j} \backslash P_{i}\right|=\left|P_{j} \cap P_{k}\right|$, which (having in mind that $P_{i} \cap P_{j} \cap P_{k}=\emptyset$) leads to $\left|P_{i} \cap P_{k}\right|=\left|P_{j} \cap P_{k}\right|=$ $\frac{1}{2}\left|P_{k}\right|=\frac{\lambda(n-1)}{2}$.

If $\lambda \equiv 1(\bmod 2)$, let $E_{i, k}$ denote the set of all edges of λK_{n} joining a vertex of Y_{i} to a vertex of Y_{k}. Clearly, $\left|E_{i, k}\right|$ is odd. Moreover, for every color c from $P_{i} \cap P_{k}$, the number of edges in $E_{i, k}$ colored with c is odd. Since each edge of K_{n} joining a vertex of Y_{i} to a vertex of Y_{k} appears in λK_{n} with the odd multiplicity λ, the number $\frac{\lambda(n-1)}{2}$ of colors in $P_{i} \cap P_{k}$ must be odd, which contradicts the fact that $n-1 \equiv 0(\bmod 4)$.

If $n=5$, suppose without loss of generality that $\left|Y_{1}\right| \leq\left|Y_{2}\right| \leq\left|Y_{3}\right|$, which yields $\left|Y_{1}\right|=\left|Y_{2}\right|=1$ and $\left|Y_{3}\right|=3$. Let $Y_{1}=\left\{y_{1}\right\}, Y_{2}=\left\{y_{2}\right\}, Y_{3}=$ $\left\{y_{3}, y_{4}, y_{5}\right\}$, and for $u, v \in V\left(\lambda K_{5}\right)$ let $S_{f}(u, v)$ be the set of λ colors (under f) of the edges of λK_{5} with endvertices u, v. The coloring f is proper, hence $S_{f}\left(y_{1}, y_{3}\right) \cap S_{f}\left(y_{2}, y_{3}\right)=\emptyset$. Then, however, $S_{f}\left(y_{4}, y_{5}\right) \supseteq S_{f}\left(y_{1}, y_{3}\right) \cup S_{f}\left(y_{2}, y_{3}\right)$, and so $\lambda=\left|S_{f}\left(y_{4}, y_{5}\right)\right| \geq\left|S_{f}\left(y_{1}, y_{3}\right)\right|+\left|S_{f}\left(y_{2}, y_{3}\right)\right|=2 \lambda$, a contradiction.

It remains to consider the case $\lambda \equiv 0(\bmod 2)$ and $n \geq 9$. Suppose first that $\lambda=2$ and $n=4 k+1, k \geq 2$. Let $V\left(\lambda K_{n}\right)=V\left(K_{n}\right)=X_{1} \cup X_{2} \cup X_{3}$ with $\left|X_{1}\right|=\left|X_{3}\right|=2 k-1(\geq 3),\left|X_{2}\right|=3$, and $X_{i} \cap X_{j}=\emptyset$ whenever $i \neq j$. We express the multigraph $2 K_{n}$ as an edge-disjoint union of graphs $F_{i}=K_{X_{2} \cup X_{i}}, G_{i}=D_{X_{2}} \oplus\left(K_{X_{i}}-E\left(C_{X_{i}}\right)\right), i=1,3, H_{0}=D_{X_{1}} \oplus D_{X_{3}}$ and $H=C_{X_{1}} \oplus C_{X_{3}}$. All involved graphs are class 1, since $F_{i} \cong K_{2 k+2}, i=1,3$, $H_{0} \cong K_{2 k-1,2 k-1}$, and for G_{1}, G_{3}, H we can use Theorem 2: G_{i} is a $(2 k-1)$ regular graph of order $2 k+2$ and $2 k-1 \geq \frac{2 k+2}{2}, i=1,3$, while H is a $(2 k+1)$ regular graph of order $4 k-2$ and $2 k+1 \geq \frac{4 k-2}{2}$. Thus, by Proposition 3, the graphs $F_{1}, F_{3}, H_{0}, G_{1}, G_{3}$ and H have palette-minimum colorings with unique palettes R, S, T, R^{+}, S^{+}and T^{+}that are (without loss of generality) pairwise disjoint. Then the superposition of all six used colorings yields a proper edge coloring of $2 K_{n}$ with three palettes, namely $R \cup T \cup R^{+} \cup T^{+}$(for vertices in X_{1}), $R \cup S \cup R^{+} \cup S^{+}$(for vertices in X_{2}) and $S \cup T \cup S^{+} \cup T^{+}$(for vertices in $\left.X_{3}\right)$. Thus, $\check{s}\left(2 K_{n}\right)=3$.

If $\lambda \geq 4$, we split λK_{n} into $\frac{\lambda}{2}$ edge-disjoint copies of $2 K_{n}$. To obtain a proper edge coloring of λK_{n} with three palettes each of mentioned copies is properly edge colored using a palette-minimum coloring with a "private" set of colors and the same partition $\left\{X_{1}, X_{2}, X_{3}\right\}$ of its vertex set as above.

To prove the main result of our paper we shall need three lemmas.

Lemma 10. If p, q are integers with $\min (p, q) \geq 2$, then $\check{s}\left(K_{p \times q}\right) \leq \check{s}\left(q K_{p}\right)$.
Proof. Consider a complete multigraph $q K_{p}$ with $V\left(q K_{p}\right)=[1, p]$ and a palette-minimum coloring $f: E\left(q K_{p}\right) \rightarrow C$. For $i, j \in[1, p], i<j$, let $C_{i, j}$ denote the set of q colors used to color q parallel edges of $q K_{p}$ with endvertices i, j. Use the colors of $C_{i, j}$ in a proper edge coloring $f_{i, j}: E\left(D_{V_{i}} \oplus D_{V_{j}}\right) \rightarrow C_{i, j}$ using the fact that $D_{V_{i}} \oplus D_{V_{j}} \cong K_{q, q}$. The superposition of all $f_{i, j}$'s is a proper edge coloring $\bar{f}: E\left(K_{p \times q}\right) \rightarrow C$, in which $S_{\bar{f}}\left(v_{i, k}\right)=S_{f}(i)$ for every $i \in[1, p]$ and $k \in[1, q]$. As a consequence, $\check{s}\left(K_{p \times q}\right) \leq \check{s}\left(q K_{p}\right)$.

Lemma 11. Let r be a positive integer. Consider vertex-disjoint cycles $S=\left(\left(s_{0}\right)^{1},\left(s_{1}\right)^{1}, \ldots,\left(s_{2 r}\right)^{1},\left(s_{2 r+1}\right)^{1}=\left(s_{0}\right)^{1}\right)$ and $T=\left(\left(t_{0}\right)^{2},\left(t_{1}\right)^{2}, \ldots,\left(t_{2 r}\right)^{2}\right.$, $\left.\left(t_{2 r+1}\right)^{2}=\left(t_{0}\right)^{2}\right)$ of length $2 r+1$ in the complete graph $K=K_{4 r+2}$ with $V(K)=\left\{(i)^{j}: i \in[0,2 r], j \in[1,2]\right\}$. If there are $x, y \in[0,2 r-1]$ and $l \in[0,2 r]$ such that either $t_{y+1}-s_{x+1}=s_{y}-t_{x}=l$ or $t_{y+1}-s_{x}=t_{y}-s_{x+1}=l$, then the set $E(S) \cup E(T) \cup\left\{(i)^{1}(|i+l| 2 r+1 \mid)^{2}: i \in[0,2 r]\right\}$ induces a cubic class 1 spanning subgraph of the graph K.

Proof. Let G be the graph induced by the mentioned set of edges. Suppose first that $t_{y+1}-s_{x+1}=t_{y}-s_{x}=l$. Then $t_{y}=s_{x}+l, t_{y+1}=s_{x+1}+l$ and $E(G)$ can be partitioned into the following three perfect matchings of G :

$$
\begin{aligned}
& \left\{\left(s_{|x+2 i-1| 2 r+1 \mid}\right)^{1}\left(s_{|x+2 i| 2 r+1 \mid}\right)^{1}: i \in[1, r]\right\} \cup\left\{\left(s_{x}\right)^{1}\left(t_{y}\right)^{2}\right\} \cup \\
& \left\{\left(t_{|y+2 i-1| 2 r+1 \mid}\right)^{2}\left(t_{|y+2 i| 2 r+1 \mid}\right)^{2}: i \in[1, r]\right\}, \\
& \left\{\left(s_{|x+2 i| 2 r+1 \mid}\right)^{1}\left(s_{|x+2 i+1| 2 r+1 \mid}\right)^{1}: i \in[1, r]\right\} \cup\left\{\left(s_{x+1}\right)^{1}\left(t_{y+1}\right)^{2}\right\} \cup \\
& \left\{\left(t_{|y+2 i| 2 r+1 \mid}\right)^{2}\left(t_{|y+2 i+1| 2 r+1 \mid}\right)^{2}: i \in[1, r]\right\}, \\
& \left\{\left(s_{x}\right)^{1}\left(s_{x+1}\right)^{1}\right\} \cup\left\{(i)^{1}(|i+l| 2 r+1 \mid)^{2}: i \in[0,2 r] \backslash\left\{s_{x}, s_{x+1}\right\}\right\} \cup \\
& \left\{\left(t_{y}\right)^{2}\left(t_{y+1}\right)^{2}\right\} .
\end{aligned}
$$

If $t_{y+1}-s_{x}=t_{y}-s_{x+1}=l$, we use the fact that $S^{-1}=\left(\left(s_{2 r+1}\right)^{1},\left(s_{2 r}\right)^{1}, \ldots\right.$, $\left.\left(s_{1}\right)^{1},\left(s_{0}\right)^{1}\right)$ and T are vertex-disjoint cycles of length $2 r+1$ in K, too.

Let p be an integer with $p \equiv 1(\bmod 4)$ and $p \geq 5$. Further, for $i \in\left[0, \frac{p-3}{2}\right]$ and $j \in[1,2]$, let $H^{j}(i)$ stand for the cycle

$$
\begin{gathered}
\left((i)^{j},(|i+1| p-1 \mid)^{j},(|i-1| p-1 \mid)^{j},(|i+2| p-1 \mid)^{j},(|i-2| p-1 \mid)^{j}, \ldots,\right. \\
\left.\left(\left.\left|i+\frac{p-3}{2}\right| p-1 \right\rvert\,\right)^{j},\left(\left.\left|i-\frac{p-3}{2}\right| p-1 \right\rvert\,\right)^{j},\left(\left.\left|i+\frac{p-1}{2}\right| p-1 \right\rvert\,\right)^{j},(p-1)^{j},(i)^{j}\right)
\end{gathered}
$$

on the vertex set $U^{j}=\left\{(k)^{j}: k \in[0, p-1]\right\}$ of cardinality p. Let G_{e}^{j} denote the $\frac{p-1}{2}$-regular graph with $V\left(G_{e}^{j}\right)=U^{j}$ and $E\left(G_{e}^{j}\right)=\bigcup_{k=0}^{(p-5) / 4} H^{j}(2 k)$.

Analogously, we define another $\frac{p-1}{2}$-regular graph G_{o}^{j} to have $V\left(G_{o}^{j}\right)=U^{j}$ and $E\left(G_{o}^{j}\right)=\bigcup_{k=0}^{(p-5) / 4} H^{j}(2 k+1)$. Notice that $E\left(G_{e}^{j}\right) \cap E\left(G_{o}^{j}\right)=\emptyset$ and $E\left(G_{e}^{j}\right) \cup E\left(G_{o}^{j}\right)=E\left(K_{p}^{j}\right)$, where the complete graph $K_{p}^{j} \cong K_{p}$ has the vertex set $U^{j}, j=1,2$. Further, we construct two bipartite $\frac{p-1}{2}$-regular graphs B_{e}, B_{o} with the bipartition $\left\{U^{1}, U^{2}\right\}$ and with

$$
\begin{aligned}
& E\left(B_{e}\right)=\left\{(i)^{1}(|i+2 k| p \mid)^{2}: i \in[0, p-1], k \in\left[1, \frac{p-1}{2}\right]\right\} \\
& E\left(B_{o}\right)=\left\{(i)^{1}(|i+2 k-1| p \mid)^{2}: i \in[0, p-1], k \in\left[1, \frac{p-1}{2}\right]\right\}
\end{aligned}
$$

Obviously, $E\left(B_{e}\right) \cap E\left(B_{o}\right)=\emptyset$. Let B be the $(p-1)$-regular bipartite graph with the bipartition $\left\{U^{1}, U^{2}\right\}$ and with $E(B)=E\left(B_{e}\right) \cup E\left(B_{o}\right)$. Then $B=$ $\left(D_{U^{1}} \oplus D_{U^{2}}\right)-M$, where $M=\left\{(i)^{1}(i)^{2}: i \in[0, p-1]\right\}$ is a perfect matching in the graph $D_{U^{1}} \oplus D_{U^{2}} \cong K_{p, p}$. Note that B_{e}, B_{o} and B are all class 1 graphs.

Consider $(p-1)$-regular graphs L_{e}, L_{o} and $\frac{3 p-3}{2}$-regular graphs E_{e}, E_{o} on the vertex set $U^{1} \cup U^{2}$ with $E\left(L_{e}\right)=E\left(G_{e}^{1}\right) \cup E\left(G_{o}^{2}\right) \cup E\left(B_{e}\right), E\left(L_{o}\right)=$ $E\left(G_{o}^{1}\right) \cup E\left(G_{e}^{2}\right) \cup E\left(B_{o}\right), E\left(E_{e}\right)=E\left(L_{e}\right) \cup E\left(B_{o}\right)$ and $E\left(E_{o}\right)=E\left(L_{o}\right) \cup E\left(B_{e}\right)$.
Lemma 12. If p is an integer with $p \equiv 1(\bmod 4)$ and $p \geq 5$, then $\check{s}\left(L_{e}\right)=$ $\check{s}\left(L_{o}\right)=\check{s}\left(E_{e}\right)=\check{s}\left(E_{o}\right)=1$.
Proof. Let $J_{e}(i)$ denote the cubic spanning subgraph of L^{e} with $E\left(J_{e}(i)\right)=$ $E\left(H^{1}(2 i)\right) \cup E\left(H^{2}\left(\frac{p-3}{2}-2 i\right)\right) \cup\left\{(k)^{1}(|k-1-4 i| p)^{2}: k \in[0, p-1]\right\}$ and $i \in$ $\left[0, \frac{p-5}{4}\right]$. Let $x=p-2$ and $y=0$. If $H^{1}(2 i)=\left(\left(s_{0}\right)^{1},\left(s_{1}\right)^{1}, \ldots,\left(s_{p-1}\right)^{1},\left(s_{p}\right)^{1}=\right.$ $\left.\left(s_{0}\right)^{1}\right)$ and $H^{2}\left(\frac{p-3}{2}-2 i\right)=\left(\left(t_{0}\right)^{2},\left(t_{1}\right)^{2}, \ldots,\left(t_{p-1}\right)^{2},\left(t_{p}\right)^{2}=\left(t_{0}\right)^{2}\right)$, then $s_{x}=$ $\left.\left|2 i-\frac{p-3}{2}\right| p-1 \right\rvert\,=2 i+\frac{p+1}{2}, s_{x+1}=2 i+\frac{p-1}{2}, t_{y}=\frac{p-3}{2}-2 i$ and $t_{y+1}=\frac{p-1}{2}-2 i$. Since $t_{y+1}-s_{x}=-1-4 i=t_{y}-s_{x+1}$, by Lemma 11 the graph $J_{e}(i)$ is class 1. Moreover, for any $l \in \mathbb{Z}$ the set $P(l)=\left\{(k)^{1}(|k-l| p \mid)^{2}: k \in[0, p-1]\right\}$ is a perfect matching of the graph L_{e}. Therefore, $\left\{J_{e}(i): i \in\left[0, \frac{p-5}{4}\right]\right\} \cup\{P(3+$ $\left.4 i): i \in\left[0, \frac{p-5}{4}\right]\right\}$ is a partition of $E\left(L_{e}\right)$ into subsets inducing regular class 1 spanning subgraphs of L_{e}. Thus L_{e} itself is a regular class 1 graph, and, by Proposition $3, \check{s}\left(L_{e}\right)=1$. Any superposition of palette-minimum colorings of L_{e} and B_{o} using disjoint sets of colors then shows that $\check{s}\left(E_{e}\right)=1$.

It is easy to see that the mapping $(i)^{j} \mapsto(|i+1| p \mid)^{3-j}, i \in[0, p-1]$, $j \in[1,2]$, defines an isomorphism from L_{e} onto L_{o} and from L_{e} onto L_{o} as well; so, $\check{s}\left(L_{o}\right)=\check{s}\left(E_{o}\right)=1$.
Theorem 13. Let p, q be integers with $\min (p, q) \geq 2$. Then

$$
\check{s}\left(K_{p \times q}\right)= \begin{cases}1 & \text { if } p q \equiv 0 \quad(\bmod 2) \\ 3 & \text { otherwise }\end{cases}
$$

Proof. We consider several cases according to the properties of the pair (p, q). We have $\left|E\left(K_{p \times q}\right)\right|=q^{2}\binom{p}{2}, \Delta\left(K_{p \times q}\right) \mid=(p-1) q$ and $\left|V\left(K_{p \times q}\right)\right|=p q$, hence the graph $K_{p \times q}$ is overfull if and only if $\frac{p q}{2}>\left\lfloor\frac{p q}{2}\right\rfloor$.

Case 1: If $p q \equiv 0(\bmod 2)$, then $K_{p \times q}$ is not overfull, and, by Theorem 1 and Proposition 3, $\check{s}\left(K_{p \times q}\right)=1$.

Case 2: If $p q \equiv 1(\bmod 2)$, then the regular graph $K_{p \times q}$ is overfull, so that, by Theorem 1 and Lemma $4, \check{s}\left(K_{p \times q}\right) \geq 3$.

Case 21: If $p \equiv 3(\bmod 4)$, then, using Lemma 10 and Theorem 9, $\check{s}\left(K_{p \times q}\right) \leq 3$.

Case 22: If $p \equiv 1(\bmod 4)$, let $W_{j}=\left\{v_{i, j}: i \in[1, p]\right\}$ for $j \in[1, q]$.
Case 221: If $q \equiv 3(\bmod 4)$, we construct a proper edge coloring of $K_{p \times q}$ using a set of colors $\bigcup_{k=1}^{(q-1) / 2}\left(C_{k} \cup D_{k} \cup E_{k}\right)$, where $\left\{C_{k}, D_{k}, E_{k}: k \in\left[1, \frac{q-1}{2}\right]\right\}$ is a system of pairwise disjoint sets with $\left|C_{1}\right|=\left|D_{1}\right|=\left|E_{1}\right|=\frac{3 p-3}{2}$ and $\left|C_{k}\right|=\left|D_{k}\right|=\left|E_{k}\right|=p-1$ for $k \in\left[2, \frac{q-1}{2}\right]$.

First of all, consider a proper edge coloring of a complete graph $K_{(q+1) / 2}^{c} \cong$ $K_{(q+1) / 2}$ with $V\left(K_{(q+1) / 2}^{c}\right)=\left[1, \frac{q+1}{2}\right]$ using colors $c_{k}, k \in\left[1, \frac{q-1}{2}\right]$. Moreover, we require that the edges colored with c_{1} are $\{2 x-1,2 x\}, x \in\left[1, \frac{q+1}{4}\right]$. We use the colors of C_{1} to color properly (according to Lemma 12) edges of the graph $E_{e}(2 x-1,2 x) \cong E_{e}$, in which $v_{i, 2 x-1}$ and $v_{i, 2 x}$ play the roles of $(i-1)^{1}$ and $(i-1)^{2}$, respectively, $i \in[1, p]$ (for each $x \in\left[1, \frac{q+1}{4}\right]$). Further, we use the colors of $C_{k}, k \in\left[2, \frac{q-1}{2}\right]$, to color the edges of the bipartite graph $B(y, z)=\left(D_{W_{y}} \oplus D_{W_{z}}\right)-\left\{v_{i, y}, v_{i, z}: i \in[1, p]\right\} \cong B$ whenever the edge $\{y, z\} \in E\left(K_{(q+1) / 2}^{c}\right)$ is colored with c_{k}.

Similarly, we take a proper edge coloring of a complete graph $K_{(q+1) / 2}^{d} \cong$ $K_{(q+1) / 2}$ with $V\left(K_{(q+1) / 2}^{d}\right)=\left[\frac{q+1}{2}, q\right]$ using colors $d_{k}, k \in\left[1, \frac{q-1}{2}\right]$, with the assumption that the color d_{1} is used on the edges $\{2 x, 2 x+1\}, x \in\left[\frac{q+1}{4}, \frac{q-1}{2}\right]$. The colors of the set D_{1} are used to color properly the edges of $E_{e}(2 x, 2 x+1)$, $x \in\left[\frac{q+1}{4}, \frac{q-1}{2}\right]$, and the colors of D_{k} with $k \in\left[2, \frac{q-1}{2}\right]$ are used to color the edges of $B(y, z)$ whenever $\{y, z\} \in E\left(K_{(q+1) / 2}^{d}\right)$ is colored with d_{k}.

Finally, consider a proper edge coloring of the graph

$$
D_{[1,(q-1) / 2]} \oplus D_{[(q+3) / 2, q]} \cong K_{(q-1) / 2,(q-1) / 2},
$$

in which the edges $\left\{x, x+\frac{q+1}{2}\right\}, x \in\left[1, \frac{q-1}{2}\right]$, are colored with e_{1}. The colors of E_{1} are used to color the edges of the graph $E_{o}\left(2 x-1,2 x-1+\frac{q+1}{2}\right) \cong E_{o}$,
$x \in\left[1, \frac{q+1}{4}\right]$, as well as the edges of the graph $\sum_{e}\left(2 x, 2 x+\frac{q-1}{2}\right), x \in\left[1, \frac{q-3}{4}\right]$. Moreover, the colors of $E_{k}, k \in\left[2, \frac{q-1}{2}\right]$, are used to color the edges of $B(y, z)$ whenever the edge $\{y, z\}, y \in\left[1, \frac{q-1}{2}\right], z \in\left[\frac{q+3}{2}, q\right]$, is colored with e_{k}.

In the resulting proper edge coloring of $K_{p \times q}$ for every $i \in[1, p]$ a vertex $v_{i, j}$ receives the palette $\bigcup_{k=1}^{(q-1) / 2}\left(C_{k} \cup E_{k}\right)$ if $j \in\left[1, \frac{q-1}{2}\right]$, the palette $\bigcup_{k=1}^{(q-1) / 2}\left(C_{k} \cup D_{k}\right)$ if $j=\frac{q+1}{2}$ and the palette $\bigcup_{k=1}^{(q-1) / 2}\left(D_{k} \cup E_{k}\right)$ if $j \in\left[\frac{q+3}{2}, q\right]$.

Case 222: $q \equiv 1(\bmod 4)$
Case 2221: If $q \geq 9$, consider a palette-minimum coloring of a complete multigraph $2 K_{q}$ with colors from the set $R \cup S \cup T \cup R^{+} \cup S^{+} \cup T^{+}=\left\{a_{k}: k \in\right.$ $[1,3 q-5]\}$ as constructed in the proof of Theorem 9, where $X_{1}=\left[1, \frac{q-3}{2}\right]$, $X_{2}=\left[\frac{q-1}{2}, \frac{q+3}{2}\right]$ and $X_{3}=\left[\frac{q+5}{2}, q\right]$. We suppose that $a_{1} \in R, a_{2} \in S, a_{3} \in T$ and edges colored with a_{1} have endvertices $2 x-1$ and $2 x, x \in\left[1, \frac{q-3}{4}\right]$, those colored with a_{2} have endvertices $2 x$ and $2 x+1, x \in\left[\frac{q-1}{4}, \frac{q-1}{2}\right]$, and those colored with a_{3} have endevertices x and $x+\frac{q+3}{2}, x \in\left[1, \frac{q-3}{2}\right]$.

We construct a proper edge coloring of $K_{p \times q}$ using a set of colors $\bigcup_{k=1}^{3 q-5} A_{k}$, where $\left\{A_{k}: k \in[1,3 q-5]\right\}$ is a system of pairwise disjoint sets with $\left|A_{k}\right|=$ $p-1, k \in[1,3]$, and $\left|A_{k}\right|=\frac{p-1}{2}, k \in[4,3 q-5]$.

First, for $x \in\left[1, \frac{q-3}{4}\right]$, we use the colors from A_{1} to color properly (according to Lemma 12) the edges of the graph $L_{e}(2 x-1,2 x)$. Similarly, for $x \in\left[\frac{q-1}{4}, \frac{q-1}{2}\right]$ we use the colors from A_{2} to color properly the edges of $L_{e}(2 x, 2 x+1)$. The colors from A_{3} are used to color properly the edges of $L_{o}\left(2 x-1,2 x-1+\frac{q+3}{2}\right), x \in\left[1, \frac{q-1}{4}\right]$, as well as those of $L_{e}\left(2 x, 2 x+\frac{q+3}{2}\right)$, $x \in\left[1, \frac{q-5}{4}\right]$.

The remaining edges of $K_{p \times q}$ are colored step by step using induced subgraphs $S(y, z)=\left(D_{W_{y}} \oplus D_{W_{z}}\right)-\left\{v_{i, y} v_{i, z}: i \in[1, p]\right\}$ of $K_{p \times q}$ with $y<z$. If no edge of $S(y, z)$ is colored and an edge of $2 K_{q}$ with endvertices y, z is colored with a color $a_{k}, k \in[4,3 q-5]$, we use the colors of A_{k} to color properly the edges of the bipartite graph $B_{e}(y, z) \cong B_{e}$ with the bipartition $\left\{W_{y}, W_{z}\right\}$, in which $v_{i, y}$ and $v_{i, z}$ play the roles of $(i-1)^{1}$ and $(i-1)^{2}$, respectively, $i \in[1, p]$. If "half" of edges of $S(y, z)$ are already colored using the colors of A_{k} (which means that there is an edge of $2 K_{q}$ with endvertices y, z colored with a_{k}), $k \in[1,3 q-5]$, and $a_{l} \neq a_{k}, l \in[4,3 q-5]$, is the color of the second edge of $2 K_{q}$ with endvertices y, z, we color the edges of $B_{o}(y, z) \cong B_{o}$ using the colors of C_{l}.

In the obtained coloring the vertices of $W_{j}, j \in\left[1, \frac{q-3}{2}\right]$, have the palette consisting of all colors of A_{k} with $a_{k} \in R \cup T \cup R^{+} \cup T^{+}$. Analogously, for
W_{j} with $j \in\left[\frac{q-1}{2}, \frac{q+3}{2}\right]$ all k 's with $a_{k} \in R \cup S \cup R^{+} \cup S^{+}$are involved, while for W_{j} with $j \in\left[\frac{q+5}{2}, q\right]$ all k 's with $a_{k} \in S \cup T \cup S^{+} \cup T^{+}$appear.

Case 2222: If $q=5$, consider the following subsets of $V\left(K_{p \times 5}\right)$:

$$
\begin{aligned}
& S_{1}=V_{1} \backslash\left\{v_{1,5}\right\}, \quad T_{1}=\bigcup_{i=2}^{(p+1) / 2} \bigcup_{j=1}^{2}\left\{v_{i, j}\right\} \cup \bigcup_{i=(p+3) / 2}^{p} \bigcup_{j=3}^{5}\left\{v_{i, j}\right\}, \\
& S_{2}=V_{1} \backslash\left\{v_{1,4}\right\}, \quad T_{2}=\bigcup_{i=2}^{(p+1) / 2} \bigcup_{j=3}^{5}\left\{v_{i, j}\right\} \cup \bigcup_{i=(p+3) / 2}^{p} \bigcup_{j=1}^{2}\left\{v_{i, j}\right\} .
\end{aligned}
$$

Let G_{i} be the subgraph of $K_{p \times 5}$ induced by the set of vertices $S_{i} \cup T_{i}, i=$ 1,2 . Since G_{i} is a $\frac{5 p-5}{2}$-regular graph of the even order $\frac{5 p+3}{2}$ with $G_{i}=$ $D_{S_{i}} \oplus D_{T_{i}}$, by Theorem 2 it is a class 1 graph. The set of edges $E\left(K_{p \times q}\right) \backslash$ $\left(E\left(G_{1}\right) \cup E\left(G_{2}\right)\right)$ induces a $\frac{5 p-5}{2}$-regular graph G_{3} with $V\left(G_{3}\right)=\left\{v_{1,4}, v_{1,5}\right\} \cup$ $T_{1} \cup T_{2}$. We shall show that G_{3} is a class 1 graph. Then, since the graphs G_{1}, G_{2}, G_{3} are pairwise edge-disjoint, any superposition of palette-minimum edge colorings of these three graphs using pairwise disjoint sets of colors creates three palettes, namely those for the vertices of $V\left(G_{i}\right) \cap V\left(G_{j}\right)$ with $i \neq j$, i.e., $\left\{v_{1,1}, v_{1,2}, v_{1,3}\right\},\left\{v_{1,4}\right\} \cup T_{1}$ and $\left\{v_{1,5}\right\} \cup T_{2}$.

It is easy to see that the following three edge sets M_{1}, M_{2}, M_{3} are pairwise disjoint perfect matchings of G_{3} :

$$
\begin{aligned}
& \bigcup_{i=1}^{(p-1) / 2} \bigcup_{j=1}^{5}\left\{v_{2 i, j} v_{2 i+1, j}\right\} \backslash\left\{v_{2,3} v_{3,3}, v_{p-1,4} v_{p, 4}\right\} \cup\left\{v_{2,3} v_{p, 4}, v_{1,4} v_{3,3}, v_{1,5} v_{p-1,4}\right\}, \\
& \bigcup_{i=1}^{(p-1) / 2}\left\{v_{2 i, 1} v_{2 i+1,2}, v_{2 i, 2} v_{2 i+1,1}\right\} \backslash\left\{v_{2,3} v_{p, 3}\right\} \cup \\
& \bigcup_{i=0}^{(p-3) / 2} \bigcup_{j=3}^{5}\left\{v_{i+2, j} v_{p-i, j}\right\} \cup\left\{v_{1,4} v_{2,3}, v_{1,5} v_{p, 3}\right\}, \\
& (p-3) / 2 \\
& \bigcup_{i=0}^{2} \bigcup_{j=1}^{2}\left\{v_{i+2, j} v_{p-i, j}\right\} \backslash\left\{v_{2,3} v_{p, 4}, v_{2,4} v_{p, 5}, v_{3,3} v_{p-1,4}\right\} \cup \\
& (p-3) / 2 \\
& \bigcup_{i=0}^{5} \bigcup_{j=3}\left\{v_{i+2, j} v_{p-i, 3+|j+1| 3 \mid}\right\} \cup\left\{v_{1,4} v_{2,4}, v_{1,5} v_{p, 5}, v_{2,3} v_{3,3}, v_{p-1,4} v_{p, 4}\right\} .
\end{aligned}
$$

Then $G_{3}-\left(M_{1} \cup M_{2} \cup M_{3}\right)$ is a $\frac{5 p-11}{2}$-regular bipartite graph with the bipartition $\left\{\left\{v_{1,4}\right\} \cup T_{1},\left\{v_{1,5}\right\} \cup T_{2}\right\}$, which is obviously class 1 .

By Proposition 6 and Lemma 7, Theorem 13 can easily be extended to the case of (special) regular complete multipartite multigraphs.

Corollary 14. Let λ, p, q be integers with $\lambda \geq 1$ and $\min (p, q) \geq 2$. Then

$$
\check{s}\left(\lambda K_{p \times q}\right)= \begin{cases}1 & \text { if } p q \equiv 0(\bmod 2) \\ 3 & \text { otherwise } .\end{cases}
$$

To do: To write a good introduction (not necessarily as a special section). Insert the paper [1] in the References (and mention it in the Introduction).

References

[1] S. Bonvicini, G. Mazzuoccolo, Edge-colorings of 4-regular graphs with the minimum number of palettes, Graphs Combin. 32 (2016) 1293-1311.
[2] D.G. Hoffman, C.A. Rodger, The chromatic index of complete multipartite graphs, J. Graph Theory 16 (1992) 159-163.
[3] M. Horňák, R. Kalinowski, M. Meszka, M. Woźniak, Edge colorings and the number of palettes, Graphs Combin. 30 (2014) 619-626.
[4] C.C. Lindner, M. Meszka, A. Rosa, Palettes in block colourings of designs, Australas. J. Combin. 56 (2013) 235-243.
[5] C. De Simone, A. Galluccio, Edge coloring of regular graphs od large degree, Theoret. Comput. Sci. 389 (2007) 91-99.
[6] Vizing, V.G., On an estimate of the chromatic class of a p-graph, Diskret. Analiz 3 (1964) 25-30.

[^0]: *Institute of Mathematics, P.J. Šafárik University, Jesenná 5, 04001 Košice, Slovakia, e-mail: mirko.hornak@upjs.sk
 ${ }^{\dagger}$ AGH University of Science and Technology, al. Mickiewicza 30, 30059 Kraków, Poland, e-mail: meszka@agh.edu.pl
 ${ }^{\ddagger}$ AGH University of Science and Technology, al. Mickiewicza 30, 30059 Kraków, Poland e-mail: mwozniak@agh.edu.pl

