MATEMATYKA DYSKRETNA

Mirko HORŇÁK, Jakub PRZYBYŁO and Mariusz WOŹNIAK

A note on a directed version of the 1-2-3 Conjecture

Preprint Nr MD 090

(otrzymany dnia 30.08.2017)

Kraków 2017

Redaktorami serii preprintów Matematyka Dyskretna są:
Wit FORYŚ (Instytut Informatyki UJ, Katedra Matematyki Dyskretnej AGH)
oraz
Mariusz WOŹNIAK (Katedra Matematyki Dyskretnej AGH)

A note on a directed version of the 1-2-3 Conjecture

Mirko Horňák ${ }^{\text {a }}$, Jakub Przybyło ${ }^{\text {b,* }}$, Mariusz Woźniak ${ }^{\text {b }}$
${ }^{a}$ Institute of Mathematics, P.J. Šafárik University, Jesenná 5, 04001 Košice, Slovakia
${ }^{b}$ AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Abstract

The least k such that a given digraph $D=(V, A)$ can be arc-labeled with integers in the interval $[1, k]$ so that the sum of values in-coming to x is distinct from the sum of values out-going from y for every $\operatorname{arc}(x, y) \in A$, is denoted by $\bar{\chi}_{E}^{e}(D)$. This corresponds to one of possible directed versions of the well-known 1-2-3 Conjecture. Unlike in the case of other possibilities, we show that $\bar{\chi}_{E}^{e}(D)$ is unbounded in the family of digraphs for which this parameter is well defined. However, if the family is restricted by excluding the digraphs with so-called lonely arcs, we prove that $\bar{\chi}_{E}^{e}(D) \leq 4$, and we conjecture that $\bar{\chi}_{E}^{e}(D) \leq 3$ should hold.

Keywords: edge coloring, digraph, 1-2-3 Conjecture
2000 MSC: 05C15, 05C20

1. Introduction

The origins of the problem go back to the eighties of the twentieth century and are associated with attempts to define the notion of irregularity of a graph using labels (colors) on the edges of a graph. Among those attempts, it was the irregularity strength that attracted the greatest attention. Perhaps this was due to a simple "geometric" interpretation based on the fact that although each graph of order greater than one contains at least two vertices

[^0]of the same degree, an analogous statement is not true for multigraphs, i.e., graphs in which we allow more than one edge between two (distinct) vertices.

Let $G=(V, E)$ be a graph. Given an integer k, a k-edge-coloring (labeling) of G is a function $f: E \rightarrow\{1,2, \ldots, k\}$. For $x \in V$, we put $\sigma(x)=\sum_{e \ni x} f(e)$. We say that two vertices x, y are sum-distinguished (the coloring f is sum-distinguishing) if $\sigma(x) \neq \sigma(y)$. The irregularity strength of G is the minimum k such that there exists a k-edge-coloring f sumdistinguishing all vertices in the graph G. The coloring f can be represented by substituting each edge e by a multiedge with multiplicity $f(e)$. The sum $\sigma(x)$ of labels around a vertex x is then equal to the degree of x in the respective multigraph.

A k-edge-coloring f of G is called neighbor-sum-distinguishing if $\sigma(x) \neq$ $\sigma(y)$ whenever $x y$ is an edge of G (we refer to it as to an nsd-coloring for short). Such a local variant of the irregularity strength gained great popularity in the twenty first century due to the following beautiful conjecture of Karoński, Łuczak, and Thomason [5], commonly called the 1-2-3 Conjecture nowadays.

Conjecture 1. If $G=(V, E)$ is a graph without isolated edges, then there is an nsd-coloring $f: E \rightarrow\{1,2,3\}$ of G.

Following the notation from the survey paper by Seamone [7] we will denote the least k so that there is an nsd- k-edge-coloring of a graph G by $\chi_{\Sigma}^{e}(G)$. The 1-2-3 Conjecture thus presumes that $\chi_{\Sigma}^{e}(G) \leq 3$ for every graph G without isolated edges. The best currently known general upper bound stating that $\chi_{\Sigma}^{e}(G) \leq 5$ is due to Kalkowski, Karoński and Pfender [4]. The conjecture is verified for particular graph classes, e.g., bipartite graphs, see [5].

Theorem 2. If G is a bipartite graph without isolated edges, then $\chi_{\Sigma}^{e}(G) \leq 3$.

We will focus on nsd-colorings of digraphs $D=(V, A)$, where we will use a simplified notation $x y$ for an arc (x, y). Given a k-arc-coloring $f: A \rightarrow$ $\{1,2, \ldots, k\}$ and a vertex $x \in V$, we discern out-going arcs $x y \in A$ and in-coming arcs $y x \in A$, and analogously the out-sum $\sigma^{+}(x)=\sum_{x y \in A} f(x y)$ and the in-sum $\sigma^{-}(x)=\sum_{y x \in A} f(y x)$ of x. Several variants of nsd-colorings of digraphs have already been considered.

The first problem of this type was introduced by Borowiecki, Grytczuk, and Pilśniak, and concerned so-called relative sums, defined for a vertex x as
$\sigma_{ \pm}(x)=\sigma^{+}(x)-\sigma^{-}(x)$. The least k so that a k-arc-coloring of a given digraph $D=(V, A)$ exists with $\sigma_{ \pm}(x) \neq \sigma_{ \pm}(y)$ for every arc $x y \in A$ is denoted by $\chi_{ \pm}^{e}(D)$. The authors proved in [3] the sharp upper bound $\chi_{ \pm}^{e}(D) \leq 2$ valid for every digraph D.

Only just then Baudon, Bensmail, and Sopena considered the least integer k admitting a k-arc-coloring of a digraph $D=(V, A)$ such that $\sigma^{+}(x) \neq \sigma^{+}(y)$ for every $x y \in A$. We denote such k by $\chi_{+}^{e}(D)$. In [2] the authors showed that $\chi_{+}^{e}(D) \leq 3$ for every digraph D and proved that given a digraph D, the problem of determining whether $\chi_{+}^{e}(D) \leq 2$ is NP-complete. (Note that obviously we obtain the same thesis for the twin graph invariant $\chi_{-}^{e}(D)$ of the above one, where we require: $\sigma^{-}(x) \neq \sigma^{-}(y)$ for every $x y \in A$.)

The third natural variant was suggested by Łuczak [6], who proposed to study the sum-distinguishing requirement $\sigma^{+}(x) \neq \sigma^{-}(y)$ for $x y \in A$. Barme et al. [1] observed that the corresponding parameter $\chi_{E}^{e}(D)$ is not defined provided that D has an arc $x y$ satisfying $d^{+}(x)=1=d^{-}(y)$, called a lonely arc. Nevertheless, they were able to prove the following upper bound.

Theorem 3. If D is a digraph without lonely arcs, then $\chi_{E}^{e}(D) \leq 3$.
The proof of Theorem 3 is based on the equivalence between the inequality $\chi_{E}^{e}(D) \leq k$ and the existence of an nsd- k-edge-coloring of a special (undirected) bipartite graph associated with D. Thus by the classification from the paper of Thomassen, Wu and Zhang [8], one may moreover determine $\chi_{E}^{e}(D)$ for any digraph D (without lonely arcs) in a polynomial time now.

In this note we study the inverse (in a way) of the problem of Łuczak above, requiring that $\sigma^{-}(x) \neq \sigma^{+}(y)$ for $x y \in A$ (which seems to be the last natural open issue in this new field). In the next section we discuss when the corresponding graph invariant $\bar{\chi}_{E}^{e}(D)$ is well defined, and, surprisingly, we prove that for those digraphs $\bar{\chi}_{E}^{e}(D)$ may be arbitrarily large. On the other hand, in Section 3 we show that $\bar{\chi}_{E}^{e}(D) \leq 4$ if lonely arcs are additionally forbidden. Finally, in the last section we pose a conjecture that then $\bar{\chi}_{E}^{e}(D) \leq$ 3 should hold, and present a few rich families of digraphs supporting this new 1-2-3-Conjecture for digraphs.

2. Boundlessness of the inverse Łuczak's problem

We call a digraph $D=(V, A)$ tractable if for a suitable k there is a k-arccoloring f of D such that for any arc $x y \in A, \sigma^{-}(x) \neq \sigma^{+}(y)$. The least such k for a tractable digraph D is denoted by $\bar{\chi}_{E}^{e}(D)$.

There are two obvious obstacles for tractability. Consider a k-arc-coloring f of a digraph $D=(V, A)$. For a vertex $x \in V$, we denote by $A^{-}(x)\left(A^{+}(x)\right)$ the set of arcs in D in-coming to x (out-going from x, respectively). An $\operatorname{arc} x y \in A$ is called a source-sink arc, an s-s arc for short, if x is a source and y is a sink of $D\left(\right.$ i.e., $d^{-}(x)=0$ and $\left.d^{+}(y)=0\right)$. Then, inevitably, $\sigma^{-}(x)=0=\sigma^{+}(y)$. The situation is similar if both arcs $x y$ and $y x$ belong to A and $x y$ is an s-s arc in the digraph $D^{\prime}=D-y x$. We then say that $\{x y, y x\}$ is a source-sink edge (an s-s edge for short). Then $A^{-}(x)=A^{+}(y)=\{y x\}$, and hence $\sigma^{-}(x)=f(y x)=\sigma^{+}(y)$. It is straightforward to see that if we forbid these two configurations in D, then $A^{-}(x) \neq A^{+}(y)$ for every arc $x y \in A$, and thus there exists a k-arc-coloring of D with $\sigma^{-}(x) \neq \sigma^{+}(y)$ for every $x y \in A$ for sufficiently large k.

Proposition 4. A digraph D is tractable if and only if D has neither $s-s$ arcs nor s-s edges.

The three parameters $\chi_{+}^{e}, \chi_{-}^{e}$ and χ_{E}^{e} fulfill a correspondingly formulated 1-2-3-Conjecture. Is it the case for the parameter $\bar{\chi}_{E}^{e}$, too? The digraph D_{4} drawn in Figure 1, gives us a negative answer to this question.

First, observe that D_{4} has neither an s-s arc nor an s-s edge. Consider an arc-coloring f of D_{4} such that $\sigma^{-}(x) \neq \sigma^{+}(y)$ whenever $x y$ is an arc of D_{4}. Let $f\left(x_{1} x_{2}\right)=a, f\left(x_{3} x_{4}\right)=b, f\left(x_{5} x_{6}\right)=c, f\left(x_{7} x_{8}\right)=d$. The digraph D_{4} satisfies $A^{+}\left(x_{2 i-1}\right)=\left\{x_{2 i-1} x_{2 i}\right\}=A^{-}\left(x_{2 i}\right), i=1,2,3,4$. Moreover, for any i, j with $1 \leq i<j \leq 4$, the arc $x_{2 i} x_{2 j-1}$ belongs to D_{4}, and hence

$$
f\left(x_{2 i-1} x_{2 i}\right)=\sigma^{-}\left(x_{2 i}\right) \neq \sigma^{+}\left(x_{2 j-1}\right)=f\left(x_{2 j-1} x_{2 j}\right) .
$$

Therefore, the colors a, b, c, d of the dashed $\operatorname{arcs} x_{2 i-1} x_{2 i}, i=1,2,3,4$, are pairwise distinct, and so $\bar{\chi}_{E}^{e}\left(D_{4}\right) \geq 4$.

Proposition 5. For any integer $k \geq 2$ there is a digraph D_{k} with $\bar{\chi}_{\dot{E}}^{e}\left(D_{k}\right) \geq$ k.

Proof. Consider a digraph D_{k} with the vertex set $\left\{x_{1}, x_{2}, \ldots, x_{2 k}\right\}$ and the arc set $\bigcup_{i=1}^{k}\left(\left\{x_{2 i-1} x_{2 i}\right\} \cup \bigcup_{j=i+1}^{k}\left\{x_{2 i} x_{2 j-1}\right\}\right)$. Suppose that an l-arc-coloring $f: E\left(D_{k}\right) \rightarrow\{1,2, \ldots, l\}$ satisfies $\sigma^{-}\left(x_{i}\right) \neq \sigma^{+}\left(x_{j}\right)$ whenever $x_{i} x_{j} \in E\left(D_{k}\right)$. It is easy to see proceeding as above that then necessarily $l \geq k$.

Corollary 6. The parameter $\bar{\chi}_{E}^{e}$ is not bounded from above by an absolute constant.

Figure 1: A digraph D_{4} where the color 4 is needed

3. Graphs without lonely arcs

Let us observe that in the digraph D_{k} from Proposition 5, the arcs $x_{2 i-1} x_{2 i}$, which necessitate the use of a large number of colors, are lonely arcs. Having this in mind, it seems natural to ask whether, if a digraph does not contain such arcs, it is possible to color its arcs in the desired way using only colors $1,2,3$. The question remains as yet unanswered. However, we are able to show that positive integers up to four are enough in this case. Note that forbidding lonely arcs in a digraph D forbids s-s edges in D, too, and so guarantees the tractability of D.

Theorem 7. If D is a digraph without s-s arcs and without lonely arcs, then $\bar{\chi}_{E}^{e}(D) \leq 4$.

To prove Theorem 7 we adapt the concept of so-called associated bipartite graphs used in [1]. Let $D=(V, A)$ be a digraph of order n with $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The associated bipartite graph of D is the undirected bipartite graph $B(D)=(X, Y, E)$ of order $2 n$ with $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$, and the edge set defined as follows: $x_{i} y_{j} \in E \Leftrightarrow v_{i} v_{j} \in$ $A, 1 \leq i, j \leq n$ (note that here $x_{i} y_{j}$ is a shortened form for $\left\{x_{i}, y_{j}\right\}$).

There is a one-to-one correspondence between the arcs of D and the edges of $B(D)$. It is easy to see that the arcs out-going from v_{i} correspond to the edges incident with x_{i}, and the arcs in-coming to v_{j} correspond to the edges incident with y_{j}. In particular, the arc $v_{i} v_{j}$ is lonely (in D) if and only if the edge $x_{i} y_{j}$ is isolated (in $B(D)$). Let us observe that, in an obvious
way, an arc-coloring of D induces an edge-coloring of $B(D)$, and vice versa. Moreover, for the arc-coloring of D and the edge-coloring of $B(D)$ inducing each other, we have $\sigma^{+}\left(v_{i}\right)=\sigma\left(x_{i}\right)$ and $\sigma^{-}\left(v_{i}\right)=\sigma\left(y_{i}\right)$.

In the following lemma we use the group $\mathbb{Z}_{4}=\{0, \mathbb{1}, \mathbb{2}, \mathfrak{B}\}$, where $\AA \in \mathbb{Z}_{4}$ is the set of integers congruent to i modulo $4, i=0,1,2,3$.

Lemma 8. Let $G=(X, Y, E)$ be a bipartite graph without isolated vertices and edges. Then there exists a mapping $f: E \rightarrow \mathbb{Z}_{4}$ such that the mapping $\sigma: X \cup Y \rightarrow \mathbb{Z}_{4}$, defined by $\sigma(u)=\sum_{u v \in E} f(u v)$, satisfies $\sigma(x) \in\{2, \mathcal{B}\}$ for each $x \in X$ and $\sigma(y) \in\{\mathbb{0}, \mathbb{1}\}$ for each $y \in Y$.

Proof. We define a required edge coloring of G componentwise. For that purpose let k be the number of components of G, and let $G_{l}=\left(X_{l}, Y_{l}, E_{l}\right)$, $l \in\{1,2, \ldots, k\}$, be the l th component of G, where $X_{l} \subseteq X$ and $Y_{l} \subseteq Y$; notice that $\left|E_{l}\right| \geq 2$. Suppose that $X_{l}=\left\{x_{0}, x_{1}, \ldots, x_{p}\right\}$, with $d=d\left(x_{0}\right) \geq$ $d\left(x_{i}\right)$ for $i=1,2, \ldots, p$, and let $y_{1}, y_{2}, \ldots, y_{d}$ be the neighbors of x_{0}.

If $d \geq 2$, we determine values of f for edges belonging to E_{l} in several stages. In the stage 0 we put on each edge in E_{l} the temporary value 0 .

In the stage $j \in\{1,2, \ldots, p\}$ we choose an arbitrary path P in G_{l} joining x_{0} with x_{j}, and we add to temporary values of the edges of P alternately $\mathbb{1}$ and B. Since $\mathbb{1}+B=\mathbb{0}$, and $\mathbb{0}$ is the identity element in \mathbb{Z}_{4}, temporary sum values do not change for inner vertices of P, hence after finishing the stage j we have temporary sum values $\sigma\left(x_{0}\right)=j \mathbb{1}, \sigma\left(x_{i}\right)=\mathfrak{B}$ for $i=1,2, \ldots, j$, and $\sigma(u)=\mathbb{O}$ for all remaining vertices $u \in X_{l} \cup Y_{l}$.

Consider the situation after finishing the stage p, when $\sigma\left(x_{0}\right)=p \mathbb{1}=\mathbb{q}$ with $p \equiv q(\bmod 4)$ and $q \in\{0,1,2,3\}$. If $q \in\{2,3\}$, we are done.

If $q \in\{0,1\}$, in the stage $p+1$ we add $\mathbb{1}$ to the temporary value of the edge $x_{0} y_{i}$ for each i satisfying $1 \leq i \leq 2-q$ to finish with $\sigma\left(y_{i}\right)=\mathbb{1}$ and $\sigma\left(x_{0}\right)=2$.

In the case $d=1$ we have $G_{l} \cong K_{1, p+1}$ with $p \geq 1$, and $E_{l}=\left\{x_{i} y_{1}: i=\right.$ $0,1, \ldots, p\}$. Colors of f for the edges in E_{l} are then defined as follows (and it is straightforward to check that the mapping σ, derived from f, has the required property for all vertices in $\left.X_{l} \cup Y_{l}\right)$:

If p is odd, then $f\left(x_{i} y_{1}\right)=2$ for $i=0,1, \ldots, p$.
If $p=2$, then $f\left(x_{0} y_{1}\right)=f\left(x_{1} y_{1}\right)=f\left(x_{2} y_{1}\right)=3$.
If p is even, $p \geq 4$, then $f\left(x_{0} y_{1}\right)=f\left(x_{1} y_{1}\right)=f\left(x_{2} y_{1}\right)=3$ and $f\left(x_{i} y_{1}\right)=2$ for $i=3,4, \ldots, p$.

This completes the proof of the lemma.

Proof of Theorem 7 Let B be the associated bipartite graph for the digraph $D=(V, A)$, and let $G=(X, Y, E)$ be created from B by excluding all its isolated vertices. The absence of lonely arcs in D causes the absence of isolated edges in G. Therefore, by Lemma 9 , there is a coloring $f: E \rightarrow \mathbb{Z}_{4}$ such that $\sigma(x) \in\{\mathbb{Z}, \mathfrak{B}\}$ for each $x \in X$ and $\sigma(y) \in\{\mathbb{0}, \mathbb{1}\}$ for each $y \in Y$.

Consider the mapping $\tilde{f}: A \rightarrow\{1,2,3,4\}$ defined so that if $x_{i} y_{j} \in E$ (with $x_{i} \in X$ and $y_{j} \in Y$), then $\tilde{f}\left(v_{i} v_{j}\right) \in f\left(x_{i} y_{j}\right)$; this is well-defined since the congruence class $f\left(x_{i} y_{j}\right) \in\{0, \mathbb{1}, 2, \mathfrak{B}\}$ has a unique representative in the set $\{1,2,3,4\}$. Let $\tilde{\sigma}^{-}$be the in-sum function and $\tilde{\sigma}^{+}$the out-sum function that correspond to \tilde{f}. To show that \tilde{f} distinguishes vertices $v_{i}, v_{j} \in V$ with $v_{i} v_{j} \in A$ we first note that $d^{-}\left(v_{i}\right)+d^{+}\left(v_{j}\right)>0$ (otherwise $v_{i} v_{j}$ would be an s-s arc in D), and then we reason as follows:

If $d^{-}\left(v_{i}\right)=0$, then $d^{+}\left(v_{j}\right)>0$, and so $\tilde{\sigma}^{-}\left(v_{i}\right)=0<\tilde{\sigma}^{+}\left(v_{j}\right)$.
If $d^{+}\left(v_{j}\right)=0$, then $d^{-}\left(v_{i}\right)>0$, hence $\tilde{\sigma}^{-}\left(v_{i}\right)>0=\tilde{\sigma}^{+}\left(v_{j}\right)$.
If $d^{-}\left(v_{i}\right)>0$ and $d^{+}\left(v_{j}\right)>0$, from the definition of the mapping \tilde{f} it is clear that $\tilde{\sigma}^{-}\left(v_{i}\right) \in \sigma\left(y_{i}\right) \in\{0, \mathbb{1}\}$ and $\tilde{\sigma}^{+}\left(v_{j}\right) \in \sigma\left(x_{j}\right) \in\{\mathbb{2}, \mathfrak{B}\}$, which immediately yields $\tilde{\sigma}^{-}\left(v_{i}\right) \neq \tilde{\sigma}^{+}\left(v_{j}\right)$.

4. The conjecture

Note that in the proof of Theorem 8 we have distinguished adjacent vertices of a digraph D in a stronger way than necessary. Indeed, if $v_{i} v_{j}$ is an arc of D, then the in-sum for v_{i} is not only distinct from the out-sum for v_{j}, but those sums even belong to distinct congruence classes modulo 4 . This is why we believe that the following conjecture holds true.

Conjecture 9. If D is a digraph without s-s arcs and lonely arcs, then $\bar{\chi}_{E}^{e}(D) \leq 3$.

A symmetric digraph $D=(V, A)$ is such that $x y \in A \Rightarrow y x \in A$. If a k-arc-coloring $f: A \rightarrow\{1,2, \ldots, k\}$ of a symmetric digraph D satisfies $x y \in A \Rightarrow \sigma^{+}(x) \neq \sigma^{-}(y)$, then it satisfies $y x \in A \Rightarrow \sigma^{-}(y) \neq \sigma^{+}(x)$, too, and vice versa. As a symmetric digraph cannot contain s-s arcs, by Theorem 3 we obtain the following proposition supporting Conjecture 9 .

Proposition 10. If D is a symmetric digraph without lonely arcs, then $\bar{\chi}_{E}^{e}(D)=\chi_{E}^{e}(D) \leq 3$.

Moreover, a connected symmetric digraph D whose underlying graph is a cycle of an odd length $2 l+1$, satisfies $\bar{\chi}_{E}^{e}(D)=\chi_{E}^{e}(D)=\chi_{\Sigma}^{e}(B(D))=$
$\chi_{\Sigma}^{e}\left(C_{4 l+2}\right)=3$. Thus the upper bound in Conjecture 9 cannot be reduced. In order to further support the plausibility of its thesis we additionally prove it for a special class of digraphs. We say a component C of a bipartite graph (X, Y, E) is an X-star if C is a star with $|V(C) \cap X|=1$; similarly is defined a Y-star.

Theorem 11. Let D be a digraph without s-s arcs and lonely arcs and let $B(D)=(X, Y, E)$. If $B(D)$ has no X-star components or $B(D)$ has no Y-star components, then $\bar{\chi}_{E}^{e}(D) \leq 3$.

Proof. Suppose first that $B(D)$ has no X-star components and let $G=$ $\left(X^{\prime}, Y^{\prime}, E\right)$ be the graph created by excluding all isolated vertices from $B(D)$. Proceeding analogously as in the proof of Lemma 8 we prove that there is a mapping $f: E \rightarrow \mathbb{Z}_{3}=\{\mathbb{0}, \mathbb{1}, \mathbb{Z}\}$ such that $\sigma(x) \in\{\mathbb{1}, 2\}$ for each $x \in X^{\prime}$ and $\sigma(y)=\mathbb{0}$ for each $y \in Y^{\prime}$ (in this case $\AA \in \mathbb{Z}_{3}$ is the set of integers congruent to i modulo $3, i=0,1,2$).

Let k be the number of components of G and let $G_{l}=\left(X_{l}, Y_{l}, E_{l}\right), l \in$ $\{1,2, \ldots, k\}$, be the l th component of G, where $X_{l} \subseteq X^{\prime}$ and $Y_{l} \subseteq Y^{\prime}$. From our assumptions it follows that the set $X=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ satisfies $p \geq 2$; let $q=\left\lfloor\frac{p}{2}\right\rfloor$.

In the stage 0 we assign $\mathbb{0}$ as the temporary value of f to each edge of E_{l}.
In the stage $j \in\{1,2, \ldots, q\}$ we choose an arbitrary path P in G_{l} joining $x_{2 j-1}$ to $x_{2 j}$, and we add to temporary values of the edges of P alternately $\mathbb{1}$ and 2 . If p is even, we are done. If p is odd, in the stage $q+1$ we proceed similarly as above with a path in G_{l} joining x_{1} to x_{p}.

The mapping f is then used to define the mapping $\tilde{f}: A \rightarrow\{1,2,3\}$ similarly as in the proof of Theorem 7 . Since \tilde{f} distinguishes adjacent vertices of D in the required way, we have $\bar{\chi}_{E}^{e}(D) \leq 3$.

If $B(D)$ has no Y-star components, we proceed the same way as above, this time however assuring that $\sigma(y) \in\{\mathbb{1}, \mathbb{2}\}$ for each $y \in Y^{\prime}$ and $\sigma(x)=0$ for each $x \in X^{\prime}$.

Corollary 12. If T is an n-vertex tournament, $n \geq 3$, then $\bar{\chi}_{E}^{e}(T) \leq 3$.
Proof. Let $V(T)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. By the way of contradiction we prove that $B(T)$ has no X-stars. Indeed, otherwise we may suppose without loss of generality that an X-star C of $B(T)$ satisfies $V(C) \cap X=\left\{x_{1}\right\}$ and $E(C) \supseteq\left\{x_{1} y_{2}, x_{1} y_{3}\right\}$. Since $d\left(y_{2}\right)=1=d^{-}\left(v_{2}\right), v_{1} v_{2} \in E(T)$ and T is a tournament, we have $d^{+}\left(v_{2}\right)=n-2=d\left(x_{2}\right), v_{2} v_{1} \notin E(T), v_{2} v_{3} \in E(T)$,
$x_{2} y_{3} \in E(B(T))$ and $d\left(y_{3}\right) \geq 2$, a contradiction. Thus, by Theorem 11, $\bar{\chi}_{E}^{e}(T) \leq 3$.

Another wide family of examples may also be derived from the result of Thomassen, Wu, and Zhang [8], who succeeded to determine $\chi_{\Sigma}^{e}(G)$ for any bipartite graph G without isolated edges, and in particular proved that $\chi_{\Sigma}^{e}(G)=2$ if $\delta(G) \geq 3$. Consequently, any digraph D with $\chi_{E}^{e}(D)=3$ supports Conjecture 9, too. Indeed, if $\chi_{E}^{e}(D)=3=\chi_{\Sigma}^{e}(B(D))$, then by [8] it follows that $\delta(B(D))=2$, i.e. $B(D)=(X, Y, E)$ has neither X-star nor Y-star components, and hence, by Theorem 11, $\bar{\chi}_{E}^{e}(D) \leq 3$.

Acknowledgements

The research of the first author was supported by the VEGA scientific grant agency (grant $1 / 0368 / 16$) and by the Slovak Research and Development Agency (grant APVV-15-0116). The research of the second author was financed within the program of the Polish Minister of Science and Higher Education named "Iuventus Plus" in years 2015-2017, project no. IP2014 038873. The third author was supported by the National Science Centre, Poland, grant no. DEC-2013/09/B/ST1/01772.

The authors are indebted to anonymous referees whose suggestions contributed to improve the presentation of the results of the paper.

References

[1] E. Barme, J. Bensmail, J. Przybyło, M. Woźniak, On a directed variation of the 1-2-3 and 1-2 Conjectures, Discrete Appl. Math. 217 (2017) 123131.
[2] O. Baudon, J. Bensmail, É. Sopena, An oriented version of the 1-2-3 Conjecture, Discuss. Math. Graph Theory 35(1) (2015) 141-156.
[3] M. Borowiecki, J. Grytczuk, M. Pilśniak, Coloring chip configurations on graphs and digraphs, Inform. Process. Lett. 112 (2012) 1-4.
[4] M. Kalkowski, M. Karoński, F. Pfender, A new upper bound for the irregularity strength of graphs, SIAM J. Discrete Math. 25(3) (2011) 1319-1321.
[5] M. Karoński, T. Łuczak, A. Thomason, Edge weights and vertex colours, J. Combin. Theory Ser. B 91 (2004) 151-157.
[6] T. Łuczak, private communication (2014).
[7] B. Seamone, The 1-2-3 conjecture and related problems: a survey, arXiv:1211.5122.
[8] C. Thomassen, Y. Wu, C.Q. Zhang, The 3-flow conjecture, factors modulo k, and the 1-2-3 conjecture, J. Combin. Theory Ser. B 121 (2016) 308-325.

[^0]: *Corresponding author
 Email addresses: mirko.hornak@upjs.sk (Mirko Horňák), jakubprz@agh.edu.pl (Jakub Przybyło), mwozniak@agh.edu.pl (Mariusz Woźniak)

