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A noteon a direted version of the 1-2-3 ConjetureMirko Hor¬áka, Jakub Przybyªob,∗, Mariusz Wo¹niakbaInstitute of Mathematis, P.J. �afárik University, Jesenná 5, 040 01 Ko²ie, SlovakiabAGH University of Siene and Tehnology, al. A. Mikiewiza 30, 30�059 Krakow,PolandAbstratThe least k suh that a given digraph D = (V,A) an be ar-labeled withintegers in the interval [1, k] so that the sum of values in-oming to x isdistint from the sum of values out-going from y for every ar (x, y) ∈ A,is denoted by χ̄e�(D). This orresponds to one of possible direted versionsof the well-known 1-2-3 Conjeture. Unlike in the ase of other possibilities,we show that χ̄e�(D) is unbounded in the family of digraphs for whih thisparameter is well de�ned. However, if the family is restrited by exludingthe digraphs with so-alled lonely ars, we prove that χ̄e�(D) ≤ 4, and weonjeture that χ̄e�(D) ≤ 3 should hold.Keywords: edge oloring, digraph, 1-2-3 Conjeture2000 MSC: 05C15, 05C201. IntrodutionThe origins of the problem go bak to the eighties of the twentieth enturyand are assoiated with attempts to de�ne the notion of irregularity of agraph using labels (olors) on the edges of a graph. Among those attempts,it was the irregularity strength that attrated the greatest attention. Perhapsthis was due to a simple �geometri� interpretation based on the fat thatalthough eah graph of order greater than one ontains at least two verties
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of the same degree, an analogous statement is not true for multigraphs, i.e.,graphs in whih we allow more than one edge between two (distint) verties.Let G = (V,E) be a graph. Given an integer k, a k-edge-oloring (la-beling) of G is a funtion f : E → {1, 2, . . . , k}. For x ∈ V , we put
σ(x) =

∑

e∋x f(e). We say that two verties x, y are sum-distinguished (theoloring f is sum-distinguishing) if σ(x) 6= σ(y). The irregularity strengthof G is the minimum k suh that there exists a k-edge-oloring f sum-distinguishing all verties in the graph G. The oloring f an be representedby substituting eah edge e by a multiedge with multipliity f(e). The sum
σ(x) of labels around a vertex x is then equal to the degree of x in therespetive multigraph.A k-edge-oloring f of G is alled neighbor-sum-distinguishing if σ(x) 6=
σ(y) whenever xy is an edge of G (we refer to it as to an nsd-oloring forshort). Suh a loal variant of the irregularity strength gained great popu-larity in the twenty �rst entury due to the following beautiful onjeture ofKaro«ski, �uzak, and Thomason [5℄, ommonly alled the 1-2-3 Conje-ture nowadays.Conjeture 1. If G = (V,E) is a graph without isolated edges, then there isan nsd-oloring f : E→{1, 2, 3} of G.Following the notation from the survey paper by Seamone [7℄ we will de-note the least k so that there is an nsd-k-edge-oloring of a graphG by χe

Σ(G).The 1-2-3 Conjeture thus presumes that χe
Σ(G) ≤ 3 for every graph G with-out isolated edges. The best urrently known general upper bound statingthat χe

Σ(G) ≤ 5 is due to Kalkowski, Karo«ski and Pfender [4℄. The onje-ture is veri�ed for partiular graph lasses, e.g., bipartite graphs, see [5℄.Theorem 2. If G is a bipartite graph without isolated edges, then χe
Σ(G) ≤ 3.We will fous on nsd-olorings of digraphs D = (V,A), where we will usea simpli�ed notation xy for an ar (x, y). Given a k-ar-oloring f : A →

{1, 2, . . . , k} and a vertex x ∈ V , we disern out-going ars xy ∈ A andin-oming ars yx ∈ A, and analogously the out-sum σ+(x) =
∑

xy∈A f(xy)and the in-sum σ−(x) =
∑

yx∈A f(yx) of x. Several variants of nsd-oloringsof digraphs have already been onsidered.The �rst problem of this type was introdued by Borowieki, Grytzuk,and Pil±niak, and onerned so-alled relative sums, de�ned for a vertex x as2



σ±(x) = σ+(x)−σ−(x). The least k so that a k-ar-oloring of a given digraph
D = (V,A) exists with σ±(x) 6= σ±(y) for every ar xy ∈ A is denoted by
χe
±(D). The authors proved in [3℄ the sharp upper bound χe

±(D) ≤ 2 validfor every digraph D.Only just then Baudon, Bensmail, and Sopena onsidered the least integer
k admitting a k-ar-oloring of a digraphD = (V,A) suh that σ+(x) 6= σ+(y)for every xy ∈ A. We denote suh k by χe

+(D). In [2℄ the authors showedthat χe
+(D) ≤ 3 for every digraph D and proved that given a digraph D,the problem of determining whether χe

+(D) ≤ 2 is NP-omplete. (Note thatobviously we obtain the same thesis for the twin graph invariant χe
−(D) ofthe above one, where we require: σ−(x) 6= σ−(y) for every xy ∈ A.)The third natural variant was suggested by �uzak [6℄, who proposedto study the sum-distinguishing requirement σ+(x) 6= σ−(y) for xy ∈ A.Barme et al. [1℄ observed that the orresponding parameter χe�(D) is notde�ned provided that D has an ar xy satisfying d+(x) = 1 = d−(y), alled alonely ar. Nevertheless, they were able to prove the following upper bound.Theorem 3. If D is a digraph without lonely ars, then χe�(D) ≤ 3.The proof of Theorem 3 is based on the equivalene between the inequality

χe�(D) ≤ k and the existene of an nsd-k-edge-oloring of a speial (undi-reted) bipartite graph assoiated with D. Thus by the lassi�ation fromthe paper of Thomassen, Wu and Zhang [8℄, one may moreover determine
χe�(D) for any digraph D (without lonely ars) in a polynomial time now.In this note we study the inverse (in a way) of the problem of �uzakabove, requiring that σ−(x) 6= σ+(y) for xy ∈ A (whih seems to be the lastnatural open issue in this new �eld). In the next setion we disuss when theorresponding graph invariant χ̄e�(D) is well de�ned, and, surprisingly, weprove that for those digraphs χ̄e�(D) may be arbitrarily large. On the otherhand, in Setion 3 we show that χ̄e�(D) ≤ 4 if lonely ars are additionallyforbidden. Finally, in the last setion we pose a onjeture that then χ̄e�(D) ≤
3 should hold, and present a few rih families of digraphs supporting this new
1-2-3-Conjeture for digraphs.2. Boundlessness of the inverse �uzak's problemWe all a digraph D = (V,A) tratable if for a suitable k there is a k-ar-oloring f of D suh that for any ar xy ∈ A, σ−(x) 6= σ+(y). The least suh
k for a tratable digraph D is denoted by χ̄e�(D).3



There are two obvious obstales for tratability. Consider a k-ar-oloring
f of a digraph D = (V,A). For a vertex x ∈ V , we denote by A−(x) (A+(x))the set of ars in D in-oming to x (out-going from x, respetively). Anar xy ∈ A is alled a soure-sink ar, an s-s ar for short, if x is a soureand y is a sink of D (i.e., d−(x) = 0 and d+(y) = 0). Then, inevitably,
σ−(x) = 0 = σ+(y). The situation is similar if both ars xy and yx belong to
A and xy is an s-s ar in the digraph D′ = D−yx. We then say that {xy, yx}is a soure-sink edge (an s-s edge for short). Then A−(x) = A+(y) = {yx},and hene σ−(x) = f(yx) = σ+(y). It is straightforward to see that if weforbid these two on�gurations in D, then A−(x) 6= A+(y) for every ar
xy ∈ A, and thus there exists a k-ar-oloring of D with σ−(x) 6= σ+(y) forevery xy ∈ A for su�iently large k.Proposition 4. A digraph D is tratable if and only if D has neither s-sars nor s-s edges.The three parameters χe

+, χe
− and χe� ful�ll a orrespondingly formulated

1-2-3-Conjeture. Is it the ase for the parameter χ̄e�, too? The digraph D4drawn in Figure 1, gives us a negative answer to this question.First, observe that D4 has neither an s-s ar nor an s-s edge. Consideran ar-oloring f of D4 suh that σ−(x) 6=σ+(y) whenever xy is an ar of D4.Let f(x1x2) = a, f(x3x4) = b, f(x5x6) = c, f(x7x8) = d. The digraph D4satis�es A+(x2i−1) = {x2i−1x2i} = A−(x2i), i = 1, 2, 3, 4. Moreover, for any
i, j with 1≤i < j≤4, the ar x2ix2j−1 belongs to D4, and hene

f(x2i−1x2i) = σ−(x2i) 6=σ+(x2j−1) = f(x2j−1x2j).Therefore, the olors a, b, c, d of the dashed ars x2i−1x2i, i = 1, 2, 3, 4, arepairwise distint, and so χ̄e�(D4) ≥ 4.Proposition 5. For any integer k ≥ 2 there is a digraph Dk with χ̄e�(Dk) ≥
k.Proof. Consider a digraph Dk with the vertex set {x1, x2, . . . , x2k} and thear set ⋃k

i=1

(

{x2i−1x2i} ∪
⋃k

j=i+1
{x2ix2j−1}

). Suppose that an l-ar-oloring
f : E(Dk) → {1, 2, . . . , l} satis�es σ−(xi) 6= σ+(xj) whenever xixj ∈ E(Dk).It is easy to see proeeding as above that then neessarily l ≥ k.Corollary 6. The parameter χ̄e� is not bounded from above by an absoluteonstant. 4
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dFigure 1: A digraph D4 where the olor 4 is needed3. Graphs without lonely arsLet us observe that in the digraph Dk from Proposition 5, the ars
x2i−1x2i, whih neessitate the use of a large number of olors, are lonelyars. Having this in mind, it seems natural to ask whether, if a digraph doesnot ontain suh ars, it is possible to olor its ars in the desired way usingonly olors 1, 2, 3. The question remains as yet unanswered. However, weare able to show that positive integers up to four are enough in this ase.Note that forbidding lonely ars in a digraph D forbids s-s edges in D, too,and so guarantees the tratability of D.Theorem 7. If D is a digraph without s-s ars and without lonely ars, then
χ̄e�(D) ≤ 4.To prove Theorem 7 we adapt the onept of so-alled assoiated bi-partite graphs used in [1℄. Let D = (V,A) be a digraph of order n with
V = {v1, v2, . . . , vn}. The assoiated bipartite graph of D is the undiretedbipartite graph B(D) = (X, Y, E) of order 2n with X = {x1, x2, . . . , xn},
Y = {y1, y2, . . . , yn}, and the edge set de�ned as follows: xiyj ∈ E ⇔ vivj ∈
A, 1 ≤ i, j ≤ n (note that here xiyj is a shortened form for {xi, yj}).There is a one-to-one orrespondene between the ars of D and the edgesof B(D). It is easy to see that the ars out-going from vi orrespond to theedges inident with xi, and the ars in-oming to vj orrespond to the edgesinident with yj. In partiular, the ar vivj is lonely (in D) if and onlyif the edge xiyj is isolated (in B(D)). Let us observe that, in an obvious5



way, an ar-oloring of D indues an edge-oloring of B(D), and vie versa.Moreover, for the ar-oloring of D and the edge-oloring of B(D) induingeah other, we have σ+(vi) = σ(xi) and σ−(vi) = σ(yi).In the following lemma we use the group Z4 = {0, 1, 2, 3}, where i ∈ Z4is the set of integers ongruent to i modulo 4, i = 0, 1, 2, 3.Lemma 8. Let G = (X, Y, E) be a bipartite graph without isolated vertiesand edges. Then there exists a mapping f : E → Z4 suh that the mapping
σ : X ∪ Y → Z4, de�ned by σ(u) =

∑

uv∈E f(uv), satis�es σ(x) ∈ {2, 3} foreah x ∈ X and σ(y) ∈ {0, 1} for eah y ∈ Y .Proof. We de�ne a required edge oloring of G omponentwise. For thatpurpose let k be the number of omponents of G, and let Gl = (Xl, Yl, El),
l ∈ {1, 2, . . . , k}, be the lth omponent of G, where Xl ⊆ X and Yl ⊆ Y ;notie that |El| ≥ 2. Suppose that Xl = {x0, x1, . . . , xp}, with d = d(x0) ≥
d(xi) for i = 1, 2, . . . , p, and let y1, y2, . . . , yd be the neighbors of x0.If d ≥ 2, we determine values of f for edges belonging to El in severalstages. In the stage 0 we put on eah edge in El the temporary value 0.In the stage j ∈ {1, 2, . . . , p} we hoose an arbitrary path P in Gl joining
x0 with xj , and we add to temporary values of the edges of P alternately 1and 3. Sine 1+ 3 = 0, and 0 is the identity element in Z4, temporary sumvalues do not hange for inner verties of P , hene after �nishing the stage jwe have temporary sum values σ(x0) = j1, σ(xi) = 3 for i = 1, 2, . . . , j, and
σ(u) = 0 for all remaining verties u ∈ Xl ∪ Yl.Consider the situation after �nishing the stage p, when σ(x0) = p1 = qwith p ≡ q (mod 4) and q ∈ {0, 1, 2, 3}. If q ∈ {2, 3}, we are done.If q ∈ {0, 1}, in the stage p + 1 we add 1 to the temporary value of theedge x0yi for eah i satisfying 1 ≤ i ≤ 2 − q to �nish with σ(yi) = 1 and
σ(x0) = 2.In the ase d = 1 we have Gl

∼= K1,p+1 with p ≥ 1, and El = {xiy1 : i =
0, 1, . . . , p}. Colors of f for the edges in El are then de�ned as follows (andit is straightforward to hek that the mapping σ, derived from f , has therequired property for all verties in Xl ∪ Yl):If p is odd, then f(xiy1) = 2 for i = 0, 1, . . . , p.If p = 2, then f(x0y1) = f(x1y1) = f(x2y1) = 3.If p is even, p ≥ 4, then f(x0y1) = f(x1y1) = f(x2y1) = 3 and f(xiy1) = 2for i = 3, 4, . . . , p.This ompletes the proof of the lemma.6



Proof of Theorem 7 Let B be the assoiated bipartite graph for the digraph
D = (V,A), and let G = (X, Y, E) be reated from B by exluding all itsisolated verties. The absene of lonely ars in D auses the absene ofisolated edges in G. Therefore, by Lemma 9, there is a oloring f : E → Z4suh that σ(x) ∈ {2, 3} for eah x ∈ X and σ(y) ∈ {0, 1} for eah y ∈ Y .Consider the mapping f̃ : A → {1, 2, 3, 4} de�ned so that if xiyj ∈ E(with xi ∈ X and yj ∈ Y ), then f̃(vivj) ∈ f(xiyj); this is well-de�ned sinethe ongruene lass f(xiyj) ∈ {0, 1, 2, 3} has a unique representative in theset {1, 2, 3, 4}. Let σ̃− be the in-sum funtion and σ̃+ the out-sum funtionthat orrespond to f̃ . To show that f̃ distinguishes verties vi, vj ∈ V with
vivj ∈ A we �rst note that d−(vi) + d+(vj) > 0 (otherwise vivj would be ans-s ar in D), and then we reason as follows:If d−(vi) = 0, then d+(vj) > 0, and so σ̃−(vi) = 0 < σ̃+(vj).If d+(vj) = 0, then d−(vi) > 0, hene σ̃−(vi) > 0 = σ̃+(vj).If d−(vi) > 0 and d+(vj) > 0, from the de�nition of the mapping f̃ itis lear that σ̃−(vi) ∈ σ(yi) ∈ {0, 1} and σ̃+(vj) ∈ σ(xj) ∈ {2, 3}, whihimmediately yields σ̃−(vi) 6= σ̃+(vj).4. The onjetureNote that in the proof of Theorem 8 we have distinguished adjaent ver-ties of a digraph D in a stronger way than neessary. Indeed, if vivj is anar of D, then the in-sum for vi is not only distint from the out-sum for vj ,but those sums even belong to distint ongruene lasses modulo 4. This iswhy we believe that the following onjeture holds true.Conjeture 9. If D is a digraph without s-s ars and lonely ars, then
χ̄e�(D) ≤ 3.A symmetri digraph D = (V,A) is suh that xy ∈ A ⇒ yx ∈ A. Ifa k-ar-oloring f : A → {1, 2, . . . , k} of a symmetri digraph D satis�es
xy ∈ A ⇒ σ+(x) 6= σ−(y), then it satis�es yx ∈ A ⇒ σ−(y) 6= σ+(x),too, and vie versa. As a symmetri digraph annot ontain s-s ars, byTheorem 3 we obtain the following proposition supporting Conjeture 9.Proposition 10. If D is a symmetri digraph without lonely ars, then
χ̄e�(D) = χe�(D) ≤ 3.Moreover, a onneted symmetri digraph D whose underlying graph isa yle of an odd length 2l + 1, satis�es χ̄e�(D) = χe�(D) = χe

Σ(B(D)) =7



χe
Σ(C4l+2) = 3. Thus the upper bound in Conjeture 9 annot be redued.In order to further support the plausibility of its thesis we additionally proveit for a speial lass of digraphs. We say a omponent C of a bipartite graph

(X, Y, E) is an X-star if C is a star with |V (C)∩X| = 1; similarly is de�neda Y -star.Theorem 11. Let D be a digraph without s-s ars and lonely ars and let
B(D) = (X, Y, E). If B(D) has no X-star omponents or B(D) has no
Y -star omponents, then χ̄e�(D) ≤ 3.Proof. Suppose �rst that B(D) has no X-star omponents and let G =
(X ′, Y ′, E) be the graph reated by exluding all isolated verties from B(D).Proeeding analogously as in the proof of Lemma 8 we prove that there is amapping f : E → Z3 = {0, 1, 2} suh that σ(x) ∈ {1, 2} for eah x ∈ X ′ and
σ(y) = 0 for eah y ∈ Y ′ (in this ase i ∈ Z3 is the set of integers ongruentto i modulo 3, i = 0, 1, 2).Let k be the number of omponents of G and let Gl = (Xl, Yl, El), l ∈
{1, 2, . . . , k}, be the lth omponent of G, where Xl ⊆ X ′ and Yl ⊆ Y ′. Fromour assumptions it follows that the set X = {x1, x2, . . . , xp} satis�es p ≥ 2;let q = ⌊p

2
⌋.In the stage 0 we assign 0 as the temporary value of f to eah edge of El.In the stage j ∈ {1, 2, . . . , q} we hoose an arbitrary path P in Gl joining

x2j−1 to x2j , and we add to temporary values of the edges of P alternately1 and 2. If p is even, we are done. If p is odd, in the stage q + 1 we proeedsimilarly as above with a path in Gl joining x1 to xp.The mapping f is then used to de�ne the mapping f̃ : A → {1, 2, 3}similarly as in the proof of Theorem 7. Sine f̃ distinguishes adjaent vertiesof D in the required way, we have χ̄e�(D) ≤ 3.If B(D) has no Y -star omponents, we proeed the same way as above,this time however assuring that σ(y) ∈ {1, 2} for eah y ∈ Y ′ and σ(x) = 0for eah x ∈ X ′.Corollary 12. If T is an n-vertex tournament, n ≥ 3, then χ̄e�(T ) ≤ 3.Proof. Let V (T ) = {v1, v2, . . . , vn}. By the way of ontradition we provethat B(T ) has no X-stars. Indeed, otherwise we may suppose without lossof generality that an X-star C of B(T ) satis�es V (C) ∩ X = {x1} and
E(C) ⊇ {x1y2, x1y3}. Sine d(y2) = 1 = d−(v2), v1v2 ∈ E(T ) and T is atournament, we have d+(v2) = n − 2 = d(x2), v2v1 /∈ E(T ), v2v3 ∈ E(T ),8



x2y3 ∈ E(B(T )) and d(y3) ≥ 2, a ontradition. Thus, by Theorem 11,
χ̄e�(T ) ≤ 3.Another wide family of examples may also be derived from the resultof Thomassen, Wu, and Zhang [8℄, who sueeded to determine χe

Σ(G) forany bipartite graph G without isolated edges, and in partiular proved that
χe
Σ(G) = 2 if δ(G) ≥ 3. Consequently, any digraph D with χe�(D) = 3supports Conjeture 9, too. Indeed, if χe�(D) = 3 = χe

Σ(B(D)), then by [8℄it follows that δ(B(D)) = 2, i.e. B(D) = (X, Y, E) has neither X-star nor
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