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Abstract

This paper presents the strategy for solving difficult inverse problems with direct problem
described by parabolic differential equations. The Hierarhical Genetic Strategy (HGS) is used
to solve optimization problem and utilize Isogeometric Finite Element Method (IGA-FEM)
for solving direct problem. The strategy consist of proper HGS and IGA-FEM errors balance
to lower computational cost while keep the high accuracy of the solution. The concept is
verified mathematically.

1 Motivation

The inverse optimization problems, which have wide application in engineering, belong to very
time consuming computational tasks. They require sequence of experiments, so called direct
problem solutions e.g. obtained by Finite Element Method (FEM). Computational time for
single experiment depends on required accuracy of the solution. Using high accuracy for solving
direct problem in each iteration of inverse problem solver leads to enormous computational
costs. The better strategy is to balance dynamically the accuracy of solving direct and inverse
problems. Such method was presented in [3]. In this paper we extend this strategy for new
class of problems - represented by parabolic differential equations. We propose to use IGA-FEM
for solving direct problem and adaptive strategy called Hierarchical Genetic Strategy (HGS) to
solve inverse problem. We dynamically balance accuracy of both iterations (direct and inverse)
which is better approach than using maximal accuracy in all cases and gives the solution with
the same accuracy. We presented a new algorithm, based on mathematical results. The relation
between errors of both strategies is prooved which allows us to execute this strategy.
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2 Preliminaries

As direct problem we consider a non-linear flow in homogeneous media problem described in [3].
We are looking for the pressure field u satisfying following equations:

∂u

∂t
−∇(k(x, u)∇u) = h(x, t, u) in Ω× [0, T ], (2.1)

∇un̂ = 0 in ∂Ω× [0, T ] (2.2)

u(x, 0) = u0(x) in Ω. (2.3)

We consider the problem in the domain Ω = [0, 1]3, where T is the time of the simulation,
κ(x, u) is permeability of the medium, h(x, t, u) describes induced force. We assume some initial
state u0(x) and zero Neumann conditions.

Using the different methods and forward Euler scheme we obtain discretization of the vari-
ational form [3]:

(v,
utn+1,h(x) − utn,h(x)

tn+1 − tn
)Ω + (κ(x, u)5 utn,h,5v)Ω = (v, h(tn))Ω (2.4)

∀v ∈ Vh (2.5)

n = 1, ..., N (2.6)

u(x, 0) = u0(x) in Ω (2.7)

where 0 = t0 < ... < tN = T ti+1 − ti = tj+1 − tj ∀i, j = 1, ..., N , Vh ⊂ V is the finite
dimensional subspace of the linear space of test functions V ⊂ H1(Ω)

The energy of the solution u we are looking for takes the form:

E(u(x, t)) = ||u(x, t)||2Ω =

∫
Ω
|u(x, t)|2dΩ

and the energy of solution computed by IGA-FEM is defined as follows:

Eh(uh(x, t)) = ||uh(x, t)||2Ω =

∫
Ω
|uh(x, t)|2dΩ

The inverse problem under consideration is to find x∗ such as

J(x) =
h

2
|E(u(x0, t)− uh(x∗, t))| = minh→∞minx∈Ω

h

2
||E(u(x0, t)− uh(x, t))|

where x0 is the location of pumps and sinks we are looking for.

A relative FEM error utilized by the IGA-FEM code is defined as the energy norm difference
between the solutions in two next steps of IGA-FEM method

errIGA−FEM = ||uh(x, t)− uh+1(x, t)||E
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From definition the relative IGA-FEM error is also form by

||uh+1(x, t)− uh(x, t)||E =
√
a(uh+1(x, t)− uh(x, t), uh+1(x, t)− uh(x, t))

where

a(u, v) = −(κ(x, u)5 u,5v) =

∫
Ω
κ(x, u)5 u5 v

The analogical definition are also true for absolute IGA-FEM error.
Objective function error is defined as the difference between energy of solution found by

IGA-FEM method and the energy of exact solution.

eh(x, t) = |E(uh+1(x, t))− E(u(x0, t))|

3 IGA-FEM and objective function error relation

Energy of difference between solutions of two next steps in IGA-FEM method is limited by the
relative error of this strategy.

Lemma 3.1.

|E(uh+1(x, t)− uh(x, t))| ≤ P ||uh+1(x, t)− uh(x, t)||2E

Proof.

|E(uh+1(x, t)− uh(x, t))| = |
∫

Ω
(uh+1(x, t)− uh(x, t))2dΩ| ≤

from Poincare inequality

≤ |P
∫

Ω
5(uh+1(x, t)− uh(x, t))2dΩ| ≤

from definition

≤ P ||uh+1(x, t)− uh(x, t)||2E

Energy of difference between approximated solution obtain by IGA-FEM method and exact
solution is limited by absolute IGA-FEM error of this strategy.

Lemma 3.2.

|E(uh(x, t)− u(x, t))| ≤ Q||uh(x, t)− u(x, t)||2E

Proof.

|E(uh(x, t)− u(x, t))| = |
∫

Ω
(uh(x, t)− u(x, t))2dΩ| ≤

from Poincare inequality

≤ |P
∫

Ω
5(uh(x, t)− u(x, t))2dΩ| ≤
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from definition
≤ P ||uh(x, t)− u(x, t)||2E

We obtain the following dependency between the inverse and direct problems errors: the
objective function error is limited by the relative IGA-FEM error plus absolute IGA-FEM error
plus the accuracy of HGS solution.

Theorem 3.3.

eh+1(x, t) ≤ P ||uh+1(x, t)− uh(x, t)||2E +Q||uh(x, t)− u(x, t)||2E + α(x− x0)

Proof.
eh+1(x, t) = |E(uh+1(x, t)− E(u(x0, t))| =

|E(uh+1(x, t)− uh(x, t) + uh(x, t)− u(x, t) + u(x, t))− E(u(x0, t))| =

=

∫
Ω

(uh+1(x, t)− uh(x, t) + uh(x, t)− u(x, t) + u(x, t))2 −
∫

Ω
u(x0, t)

2 ≤

≤
∫

Ω
(uh+1(x, t)− uh(x, t))2 +

∫
Ω

(uh(x, t)− u(x, t))2 +

∫
Ω
u(x, t)2 −

∫
u(x0, t)

2 =

|E(uh+1(x, t)− uh(x, t))|+ |E(uh(x, t)− u(x, t))|+ |E(u(x, t)− E(u(x0, t))|

assuming Lipshitz continuous of functional E in respect to parameter x and plugging 3.1 3.2 we
obtain

eh+1(x, t) ≤ P ||uh+1(x, t)− uh(x, t)||2E +Q||uh(x, t)− u(x, t)||2E + α(x− x0)

Let’s observe that if the objective function error is much smaller than the FEM error, increas-
ing number of elements in FEM mesh is needed in order to improve accuracy of computation.
This allows us to construct algorithm in which the objective function error and FEM error
are balanced. We perform decreasing error of direct problem solution while it is greater then
assumed Ratio connected with δj .

4 IGA-HGS - inverse problem optimization algorithm descrip-
tion

We present new strategy for solving ill-posed global optimization inverse problems where direct
problem is described by parabolic differential equations. It couples isogeometric finite element
method (IGA-FEM) for solving direct problem and Hierarchical Genetic Strategy (HGS) for
solving optimization one. To obtain computing time reduction we balance the accuracy of both
algorithms.

The Hierarchical Genetic Strategy–HGS introduced by Kolodziej and Schaefer [1] enables
effective solving of global optimization problems using a variable, dynamically adapting accuracy.
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It produces a tree-structured, dynamically changing set of dependent entities. The number of
tree levels is restricted by m. Each branch is governed by a separate instance of Simple Genetic
Algorithm (SGA). All entities work asynchronously and are synchronized by the message-passing
mechanism if necessary.

There is different accuracy of searching on each level of the HGS tree. The branches of
higher order perform more chaotic and less accurate search, finding only the promising regions
in the domain. The deeper branches operate with higher accuracy and search only in the area
appointed by their parents branch.

After fixed number of genetic epochs K, called the metaepoch, each branch except leaves
sprouts the new child-branch in promising region it found. This new branch is activated sur-
rounding the best-fitted individual from the parental entity . One of methods to acquire different
accuracy on each level of tree is using binary genotypes of different lenght. An unique branch of
the first order called root performs search with lower accuracy utilizing the shortest genotypes.
The branches of level m called leaves utilizing longest genotypes and performing most accurate
search.

There is a coherency in the search between entities of different orders thanks to the spe-
cial kind of hierarchical encoding that forms the sequence of nested grids. You can find that
construction in [2]. At the begining the mesh for branches of order m is established. Next the
mesh for every jth level is defined recursively by selecting some nodes from mesh of j + 1th
branches.The maximum diameter δj determined the search accuracy on jth level of HGS tree.
It is clear that δ1 > ... > δm

HGS also implements two additional mechanisms to reduce the redundancy of the search
process. The first one, called conditional sprouting disables sprouting new entities in the region
already occupied or explored by another entity of the same order sprouted by the same parent.
The second mechanism, called branch reduction, reduces the branches of the same order that
perform the search in the common landscape region or in the regions already explored.

There are two types of stop conditions. First is local and apply for every single branch
stopping it if detects the lack of evolution progress of the current entity P. Second, global is send
to all branches. It checks if the all branches found local extremes.

Let observe that two first elements on the right side of formula 3.3 are convergent. To lower
the computational costs of algorithm the regresion of direct problem error (IGA-FEM error) and
the inverse problem error (HGS error) should be close. According to this we choose the step h
in IGA-HGS algorithm such that ratio of IGA-FEM relative error and accuracy of HGS solution
is smaller than assumption constant connected with α. The main idea of IGA-HGS algorithm
is to decrease the computational cost by dynamically balancing the accuracy of both HGS and
IGA-FEM algorithms. We use a hierarchical strategy where we increase the accuracy of the
IGA-FEM solver while restricting the search to the local neighborhood of the best individuals.
Using this strategy allows us to reduce computational cost in two ways. Firstly, it decreases
number of objective functions calls by using adaptation in HGS. Secondly, using different mesh
sizes in IGA-FEM solver causes lowering costs of fitness function evaluations

For sufficient diversity of the search in the root the large size of population, high mutation and
crossing-over rates are used. Smaller values of this parameters in leaves reduces the enormous
computational costs of local searches.

For evaluating individuals in branches of order j we perform computation on IGA-FEM mesh
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size equal to Nj elements, with number of time iteration tj and time step dtj . Let us established
some initial parameters N1, t1 and dt1 used for fitness function computations in root.

When we increase the mesh size by factor 2k, so

Nj = N1 ∗ 2k(j−1)

for j = 1, ...,m according Courant-Friedrichs-Lewy condition we have to increase number of time
steps by factor 22k, so

tj = tj−1 ∗ 22k = t1 ∗ 22k(j−1)

for j = 1, ...,m. Of course period of time for simulations in IGA-FEM computations should
be the same in all IGA-HGS branches. To maintain this following equation have to be fulfilled
tj ∗ dtj = tk ∗ dtk for j, k = 1, ...,m [4]

Based on above, dtj is decreased by factor 22k.

dtj =
dtj−1

22k
=

dt1

22k(j−1)

for j = 1, ...,m.

Note, that IGA-HGS algorithm is defined in the correct way because of search coherency
obtained by of nested grids for entities of differents levels. All individuals occurring in jth level
branch are also possible in j + 1 level ones. The sketch of strategy called IGA-HGS for one
entity is presented in Algorithm 1
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Algorithm 1: IGA-HGS algorithm for branch of jth order with varying accuracy of the
fitness function computation

1 if j = 1 then
2 initialize root population P 0;

3 repeat
4 l← 0 ;
5 if global stop condition then
6 STOP;

7 for all i ∈ P l do
8 solve direct problem for phenothype of i using IGA-FEM with proper parameters:
9 while errorFEM > Ratio ∗ δj do

10 Nj = Nj ∗ 2,
11 tj = tj ∗ 2,
12 dtj = dtj/2
13 computeerrorIGAFEM

14 compute the fitness function fj(i) value;

15 if branch stop condition then
16 STOP;

17 perform selection according to the fitness function value fj ;
18 perform genetic operations;
19 if NOT l mod K then
20 distinguish the best fitted individual from P t;
21 if NOT prefix comparison AND j ≤ m then
22 sprout;

23 l← l + 1;

24 until false;
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5 Conclusion

The proposed strategy could be applied to solving difficullt inverse problems with direct problem
described by parabolic differential equation. Through proper balancing errors of direct and
inverse problems we keep the high accuracy of the solution while lowering computational costs.
The correctness of the strategy is mathematically verified.
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