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Abstract

The distinguishing index D′(G) of a graph G is the least cardinal
number d such that G has a edge-colouring with d colours which is
preserved only by the trivial automorphism.

We use a new method to prove a general upper bound
D′(G) ≤ ∆ − 1 for any connected infinite graph G with finite maxi-
mum degree ∆ that is not a double ray. This is in contrast with finite
graphs since for every ∆ ≥ 3 there exist infinitely many connected,
finite graphs G with D′(G) = ∆. We also give examples showing that
this bound is sharp for any maximum degree ∆.

Keywords: edge colouring; symmetry breaking in graph; distinguish-
ing index; infinite graph; automorphism.
Mathematics Subject Classifications: 05C15, 05C25, 05C63

1 Introduction

We say that an automorphism ϕ of a graph G preserves an edge-colouring
c : E(G) → C if c(xy) = c(ϕ(x)ϕ(y)) for every xy ∈ E(G). If c is not
preserved by an automorphism ϕ we say that c breaks ϕ. The least cardinal
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number d such that there exists an edge-colouring c with d colours breaking
all nontrivial automorphisms of G is called the distinguishing index of G
and is denoted by D′(G). It is well defined for every connected graph which
is not isomorphic to a path of length one. The definition of D′(G) was
introduced in [3] by Kalinowski and Piĺsniak and it is similar to the notion
of the distinguishing number D(G) defined for vertex colourings by Albertson
and Collins in [1].

Assume that the graph G has a (partial) edge-colouring c. We say that
a vertex v is fixed, if it is fixed by every automorphism of G that preserves
colouring c. Similarly, we say that the set A ⊂ V (G) is fixed if it is fixed
pointwise by every automorphism of G that preserves colouring c.

Kalinowski and Piĺsniak proved the following upper bound for distin-
guishing index of finite graphs.

Theorem 1 [3] Let ∆ be any cardinal number. If G is a connected, finite
graph of order n ≥ 3, then D′(G) ≤ ∆(G) unless G = C3, C4 or C5.

This concept was also investigated for infinite graphs. Broere and Piĺsniak
obtained the following bound for infinite graphs similar to the one given
above.

Theorem 2 [2] Let G be a connected, infinite graph such that the degree
of every vertex is not greater than ∆. Then D′(G) ≤ ∆.

The aim of this paper is to improve this result and to show that the bound
given in Theorem 3 is best possible for every finite ∆ ≥ 3.

Theorem 3 Let G be a connected, infinite graph with finite maximum degree
∆ ≥ 3. Then D′(G) ≤ ∆− 1.

We prove this Theorem separately for graphs with maximum degree three
in Section 3, and for other graphs in Section 2.

2 Bound for graphs with ∆(G) ≥ 4

A ray is a graph G = (V,E), whose vertices may be enumerated with pos-
itive integers, i.e. V = {x1, x2, . . . } such that two vertices are adjacent if
and only if they are enumerated with consecutive numbers. a double ray is
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a graph formed by gluing two rays in vertices of degree one. We say that
a graph is locally finite if the degree of every vertex is finite. Before we prove
the Theorem 3 for infinite graphs G with ∆ ≥ 4, we formulate and prove
the following lemma.

Lemma 4 Let G be a connected infinite, locally finite graph. Then there
exists a non-empty maximal subgraph of G whose every component is a ray.

Proof. Let G be a connected, infinite locally finite graph. Let S be a family
of subgraphs of G whose every component is a ray or a double ray. By
Kőnig’s Lemma it is non-empty. Elements of S are ordered by the subgraph
relation and let C be a non-empty chain in S. We show that the union
⋃ C =

( ⋃
C∈C

V (C),
⋃
C∈C

E(C)

)
is an upper bound of C. Suppose that this is

not true. Then there exists a component A of
⋃ C which is neither a ray nor

a double ray. It means that it is constructed as the sum of components (rays,
double rays) of elements of C. It follows that there exist some B1, B2 ∈ C
and its components C1 ⊂ B1, C2 ⊂ B2, C1 6= C2 such that C1 ∪ C2 is not
a ray nor a double ray. As C is a chain then either B1 ⊂ B2 or B2 ⊂ B1

and C1 ∪ C2 is a subgraph of B1 or B2 but this is a contradiction because
all components are (double) rays and C1 ∪ C2 cannot be a subgraph of any
(double) ray. Therefore by Zorn’s Lemma there exists a maximal subgraph
of G whose every component is a ray or double ray. We obtain a subgraph
that satisfies the claim by deleting one edge from every double ray. �

Now, we formulate some additional definitions and a useful theorem.
A symmetric tree is a finite tree with a central vertex v0 (i.e. fixed by every
automorphism), all leaves are at the same distance from v0 and all vertices
who are not leaves have the same degree. A bisymmetric tree is a finite tree
with a central edge v0 (i.e. fixed by every automorphism), all leaves are at
the same distance from e0 and all vertices who are not leaves have the same
degree. The following theorem was proved by Piĺsniak.

Theorem 5 [4] If G is a connected, finite graph of maximum degree ∆(G)
at least three, then D′(G) ≤ ∆(G)−1 unless G is a symmetric tree, a bisym-
metric tree, K3,3 or K4, when D′(G) = ∆(G).

We can now prove the bound for infinite graphs G with finite maximum
degree ∆(G) ≥ 4.
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Theorem 6 If G is a connected infinite graph with finite maximum degree
∆ ≥ 4, then D′(G) ≤ ∆− 1.

Proof. Let F be a maximal subgraph of G whose every component is a ray.
Denote by R = {Ri : i = 1, 2 . . . , α}, for some α ∈ {1, 2, . . . , ω}, the set
of components of A. We now define a partition of E(G) onto sets A, B, C
and D as follows:

A =E(F ),

B ={e ∈ E(G) : |e ∩ V (F )| = 2}\A,
C ={e ∈ E(G) : |e ∩ V (F )| = 1},
D =E(G)\(A ∪B ∪ C).

We want to show that there exists a colouring c : E(G) → {1, . . . ,∆− 1}
breaking all non-trivial automorphisms. First, we fix vertices of V (F ). We
colour A blue and red. We colour each ray Ri from R by coding a repeating
sequence, unique to each ray. The word (blue, blue, red) corresponds to
number 1 and the word (blue, red) corresponds to number 0. Denote by wi

the word 10 . . . 0 = 10i, where 0 occurs i times. We code a repeating sequence
wω

i := wiwiwi . . . by colouring edges of Ri with colours blue and red. We
colour each edge of B with yellow colour (as ∆ − 1 ≥ 3, we have at least
three colours).

The graphG−V (F ) has only finite components because of the maximality
of F . Each of these components is joined by an edge from C to at least
one of the rays in R. We define an equivalence relation on components
of G − V (F ). We say that two components of G − V (F ) are in relation if
they have the same neighbours in V (F ). An endvertex of any ray from R
is not incident with any edge in C. Otherwise, we could extend that ray by
that edge to obtain a greater subgraph F ′ whose every component is a ray
which is a contradiction with the maximality of F . It follows that every
vertex in V (F ) is incident with no more than ∆− 2 edges from C. For every
equivalence class of the defined relation we choose and mark one vertex of F
in such a way that every component of G−V (F ) is connected to exactly one
marked vertex. For each marked vertex we colour incident edges in C with
different colours without using red or without using blue. If ui is a marked
vertex in a ray R = {u1, . . . , ui−1, ui, . . . } ∈ R and the edge ui−1ui is blue,
then we do not use blue for any edge of C incident with ui. Similarly, we
do not use red if the edge ui−1ui is coloured with red. The edges in C not
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incident with any marked vertex we colour with yellow. Moreover, we do not
use yellow for edges connecting a component H with a marked vertex if there
are more than one edge from H to a marked vertex. Hence, if the vertices
of V (F ) are fixed, then for every component H there exists a fixed edge
incident with some marked vertex. The edges in D will be coloured later.

Now we want to show that by this (partial) colouring we fixed every ray
in R no matter how the remaining part of graph is coloured. Notice that
the only rays coloured entirely with blue and red are rays in R, and rays
which are obtained by joining a path contained in one of the components
of G − A, and infinite subrays of some ray in R. This is because every
component of G− A is connected to V (F ) only by one blue or red edge, so
a ray containing only blue and red edges that starts in V (F ) and containing
at least one vertex of G− V (F ) does not exist. Every ray R ∈ R has to be
mapped onto a ray which contains an infinite subray of R due to the periodic
coding. Assume that Ri (for some i) may be mapped onto a distinct ray and
denote it by R′ = e0e1 . . . en ∪R′′, where R′′ is a subray of Ri and en ∈ C. If
the edge en is coloured with red, then R′ contains two adjacent red edges but
R does not, or in the coding of R′ there exists a word 10j1 for some j < i.
Suppose that en is coloured with blue. In that case R′ contains a blue path
of length three which does not occur in R, or in the coding of R′ there exists
a word 10j1 for some j < i. We thus showed that each vertex in V (F ) is
fixed.

Now we colour the edges in D. Each vertex from V (F ) is fixed, and
the components of G−V (F ) connected to the same set of vertices in V (F ) are
distinguished by colours of the edges incident with marked vertices. There-
fore, each component of G− V (F ) has to be mapped onto itself. It remains
to show that we can break all non-trivial automorphism of every component
H of G−V (F ) with ∆−1 colours. Denote by H ′ the graph H+e, where e is
an already fixed (pointwise) edge incident with H and with a marked vertex.
If H is P2 or a cycle, then we can distinguish H ′ with two colours leaving
the colour on e as it was before. If H is a bisymmetric tree or a symmetric
tree of degree ∆, then H ′ is not such a tree anymore. If H is equal to K3,3

or K4, then ∆(H) < ∆(G). Therefore we can distinguish H or H ′ (colouring
edge e as it was coloured before) with ∆− 1 colours by Theorem 5. We thus
constructed a colouring that fixes every vertex of G. �
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3 Bound for graphs with ∆(G) = 3

We need one more definition and theorem proved by Broere and Piĺsniak
in [2]. Let x be a vertex in G. Denote by Bx(k) the closed ball of radius
k and with center x as the set of vertices of distance from the vertex x not
greater than k. We say that a connected graph G is a tree-like graph if it
contains a vertex x with the property that for any vertex y 6= x there exists
a vertex z such that {y} = Bz(1) ∩ Bx(d(x, z) − 1). Notice that an infinite
tree T is a tree-like graph if and only if it has at most one leaf.

Theorem 7 [2] If G is a tree-like graph such that the degree of every vertex
is not greater than 2ℵ0, then D′(G) ≤ 2.

We can now prove the remaining part of Theorem 3.

Theorem 8 Let G be a connected infinite graph with maximum degree
∆(G) = 3. Then D′(G) ≤ 2.

Proof. Let x be a vertex of degree three. Let T be a spanning BFS tree
of G rooted at x. We say that a vertex v of G has a standard colouring if
the edges joining v with its sons in T have distinct colours. Denote by t1, t2
and t3 the neighbours of x. We define a colouring of the edges of T . The
edges of G − T we colour G − T with red. Roughly speaking, to show that
the colouring of G is distinguishing, it is enough to show that x is fixed and
all vertices whose fathers are not coloured with standard colouring are fixed.

Observe that if we have a partial colouring of G such that the fathers of u
and v are fixed in G and they have a standard colouring, then u cannot be
mapped to v by any automorphism which preserves the colouring. Suppose
this is not true, and u can be mapped to v for some u, v with fixed fathers.
If u or v is connected to its father with a blue edge, then this vertex is
fixed, so assume that both v and u are connected to their fathers with red
edges. This means that u is connected in G with a red edge with father of v
and v is connected in G with a red edge with father of u, so u and v have
the same father in T because it is a BFS tree. This contradicts the standard
colouring of the father of u. It follows that to show that the colouring of G
is distinguishing, it is enough to show that the root x is fixed in G and all
vertices whose fathers have two edges connecting them with their sons with
same colour are fixed.
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For i = 1, 2, 3, let Ti be the component of T − x containing ti. Now, we
consider three cases.

Case 1. At least two of T1, T2 and T3 are infinite and one of them, say T1,
has no vertices of degree one in T , and have at most finitely many vertices
of degree two in T .

If every vertex of T has degree three in T , then G = T is a tree-like graph
and there exists a distinguishing colouring of G with two colours by Theorem
7. We may assume that T3 is infinite and T2 has a vertex of degree less than
three in T . We colour each edge incident with x with blue. We can colour
T2 with a standard colouring such that there is no blue ray in T2 + x with
endvertex x. We colour T3 with a standard colouring such that there exists
a blue ray with endvertex x in T3 + x. We colour one ray in T1 + x with
endvertex x with blue, and all the edges incident with any vertex in this ray
with blue (there are infinitely many such edges). The remaining part of T1

is coloured with a standard colouring. If we colour G − T with red, then
the vertex x is fixed in G because it is a unique vertex v in G such that
in all double rays R containing v, all vertices with three incident blue edges
are in the same component of R − v. Every vertex in T connected with x
with a blue path is fixed and the remaining vertices are fixed because of the
standard colouring.

Case 2. At least two of the trees T1, T2 and T3, say T1 and T3, are infinite
and all infinite trees among T1, T2 and T3 have either a vertex of degree one
in T or infinitely many vertices of degree two in T .

We colour each edge incident with x with blue. As T2 has a vertex of de-
gree less than three in T , we can colour T2 + x with a version of standard
colouring in which there is no blue ray with endvertex x. Let P be a maximal
blue path in T2 + x with endvertex x. As T1 is infinite we can colour T1 + x
with a version of standard colouring in which there exists a blue ray with
endvertex x.

Assume first that there exists a vertex y ∈ T3 such that dT (y) = 1. If
the distance between x and y in T is not equal to the length of the path P ,
then we colour the path from x to y with blue and we colour the remaining
vertices so that T3+x is coloured with the standard colouring. The vertex x
is fixed in G because it is the only vertex incident with three blue edges, t1 is
distinguished from t2 and t3 because of the blue ray, and t2 are distinguished
from t3 because of distinct lengths of maximal blue paths in T2 + x and
T3 + x with endvertex x. If the distance between x and y in T is equal to
the length of P , then we colour the path from x to y with blue and one ray
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in T3 + x with endvertex x with blue. The remaining part of T3 is coloured
with the standard colouring. In this case, there are two vertices with three
incident blue edges. One of them is x, and let z be the other one. The vertices
x and z are fixed in G because the length of a path from z to y is less than
the length of P . The vertex t2 is fixed because there is no blue ray in T2 and
t3 is contained in a blue ray with endvertex x containing z, while t1 is not,
the remaining part of T is fixed because of the standard colouring.

Finally, assume that there are infinitely many vertices in T3 with degree
two in T . Take one on them, say y, such that the level of y is greater than
the length of P . We colour T3 + x with a version of the standard colouring
such that the path connecting x and y is coloured with blue and the edge
between y and its son with red. The vertices x, t1, t2 and t3 are fixed with
the same reasoning as before.

Case 3. Two of the trees T1, T2 and T3, say T1 and T2, are finite.
We colour xt1 with blue, xt2 with red and xt3 with blue. We put y := t3.

If dT (y) = 2, let s be its son. Then we colour edges incident with y with blue,
we put y := s and we repeat the procedure from checking the degree of y. If
dT (y) = 3, let s1 and s2 be its sons. Without loss of generality, assume that
s2 is in an infinite component of the tree T − y. Let H1 be the component
of T − y containing s1. If H1 is finite then we colour the edge ys1 with
red, we put y := s2 and we restart the procedure from checking the degree
of y. If H1 is infinite then we proceed as in Case 1 or 2, by taking putting
T2 equal to the component of T − y containing x, putting x := y. We can
follow the procedure descibed in both cases and still retaining the colouring
on edges already coloured by procedure from Case 3. This colouring fixes
the root x, and hence all other vertices. If the procedure never stops, i.e.
when all H1 are finite, then the procedure generates a blue ray. We colour
the remaining part of T with the standard colouring. Notice that there exists
only one maximal blue ray in T , so each its vertex is fixed in G, and hence
x is fixed in G. The remaining vertices are fixed because of the standard
colouring. �

4 Sharpness of the bound

From Theorem 6 and Theorem 8 it follows that Theorem 3 holds. We
now construct a family of infinite graphs Gk with maximum degree k for
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k = 3, 4, . . . , such that D′(Gk) = ∆(Gk)− 1 = k− 1 showing that the bound
in Theorem 3 is sharp. Let R be a ray with an endvertex y, and let Tk be
a symmetric tree with a central vertex x and with ∆(T ) = k − 1. Assume
that the sets of vertices of R and Tk are disjoint. We now define the graph
Gk = (V,E) so that V = V (R) ∪ V (Tk) and E = E(R) ∪ E(Tk) ∪ {xy}.
The graph Gk has only one vertex x with maximum degree k. The vertices
in R and the vertex x are fixed by every automorphism of Gk, so to colour Gk

distinguishingly it is sufficient and necessary to colour edges in Tk distinguish-
ingly and color the rest of the graph arbitrarily, so D′(Gk) = D′(Tk) = k−1,
where the last equality follows from Theorem 5. This proves that the bound
in Theorem 3 is sharp for any finite ∆(G) ≥ 3.
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