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Abstract

A graph G = (V,E) is arbitrarily partitionable if for any sequence (n1, . . . , nk) that satis�es
n1 + · · ·+ nk = |G| it is possible to divide V into disjoint subsets V = V1 ∪ · · · ∪ Vk such that

|Vi| = ni, i = 1, . . . , k and the subgraphs induced by all Vi are connected. In this paper we

inspect an on-line version of this concept and show that for graphs of order n ∈ {8, . . . , 14}
and size greater than

(
n−3
2

)
+ 6 these two concepts are equivalent. Our result together with

a theorem of Kalinowski imply that the equivalence between those two concepts holds for

graphs of any order n and size greater than
(
n−3
2

)
+ 6.

Keywords: partitions of graphs, traceable graphs, perfect matching.
Mathematics Subject Classi�cation: 05C70, 05C45.

1. Introduction

Let G = (V,E) be a graph of order n. We say that a sequence of positive integers (n1, . . . , nk) is
admissible if n1+ · · ·+nk = n. An admissible sequence is realizable in G if there exists a partition
V = V1 ∪ · · · ∪ Vk such that |Vi| = ni and G[Vi] is connected, for all i = 1, . . . , k. Then we say that
G is arbitrarily partitionable (AP, for short) if any admissible sequence is realizable in G. This
concept has been introduced by Barth, Baudon and Puech [1] and independently by Hor¬ák and
Wo¹niak [3].

Lately this de�nition was modi�ed by Hor¬ák, Tuza and Wo¹niak [2] to establish a new concept,
namely on-line arbitrarily partitionable graphs. In this variation we do not have a whole sequence
at the start, but we are given the elements individually, in succession. At the i-th step we make a
choice of a connected subgraph Vi. If we can �nish that scheme for any admissible sequence, we
call a graph on-line arbitrarily partitionable.

∗Corresponding author. E-mail address: kwasny.jakub1@gmail.com
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The problem of �nding su�cient conditions for a graph to be (on-line) AP has been intensively
studied in last years. In this paper we show that the equivalence between AP and on-line AP
condition holds if the order of a graph is between 8 and 14 and if the graph has su�ciently many
edges. Thus we �ll the gap in a theorem of Kalinowski [4] who has proved that equivalence for all
graphs of order at least 15 or at most 7. We state here the main theorem and prove it in section 3.

Theorem 1. Let G be a connected graph of order n ∈ {8, . . . , 14} and of size

||G|| >
(
n− 3

2

)
+ 6. (1)

Then G is AP if and only if G is on-line AP.

2. Preliminaries

In the beginning, we prove a few su�cient conditions for a graph satisfying inequality (1) to be
traceable.

Lemma 2. Any graph created from Kn by deleting at most n− 4 edges is Hamiltonian-connected.

Proof. Let G be such a graph. Checking Ore's condition for a graph to be Hamiltonian-connected,
for any u, v where uv 6∈ E(G), we get

d(u) + d(v) ≥ 2(n− 1)− (n− 4)− 1 = n+ 1

The inequality holds, because there can be only n−4 edges missing and only one of them might
count twice.

Lemma 3. Let G be a connected AP graph of even order that satis�es inequality (1). If there exist
two nonadjacent vertices x, y of G such that d(x) + d(y) ≤ 4, then G is traceable.

Proof. Assume that there are such vertices x, y. We count the edges of a graph G′ = G− {x, y}.

||G′|| = ||G|| − d(x)− d(y) ≥
(
n− 3

2

)
+ 7− 4

Then, since |G′| = n− 2

(
n− 2

2

)
− ||G′|| ≤ n− 6 = (n− 2)− 4

There are only |G′| − 4 edges missing from Kn−2, so by the previous lemma G′ is Hamiltonian-
connected. Now, either x and y have both only one, the same neighbour (this is a contradiction
with G being AP since there is no perfect matching) or they have two di�erent neighbours (then
we can extend a Hamiltonian path).
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Now we strenghten these lemmas, using the results of Kewen, Lai and Zhou [7]. First, we
explain their notation. Let G and H be two graphs, then G ∪H is a disjoint union of G and H,
G∨H is a graph obtained from G and H by joining every vertex of G with every vertex of H. By
Gn we denote any graph of order n. Finally de�ne G2 : Gn to be any 2-connected graph obtained
from G2 ∪Gn by joining every vertex of G2 to some vertices of H.

Lemma 4. ([7]) If G is a graph of order n satisfying d(x)+d(y) ≥ n for every pair of nonadjacent

vertices x, y ∈ V (G), then G is Hamiltonian-connected or G ∈ {G2 : (Ks ∪Kh), Gn/2 ∨Kn/2}.

Basing on this, we prove the following.

Lemma 5. Any graph G created from Kn (n ≥ 7) by deleting at most n − 3 edges is either

Hamiltonian-connected or there are Hamiltonian x, y-paths for all x, y ∈ V (G) except for one pair

{x0, y0}.

Proof. Assume that G is not Hamiltonian-connected. Then by the previous lemma, G belongs to
one of two mentioned classes. Graphs in the second class have an independent set of order n

2
so

they have at least
(
n/2
2

)
edges missing and this number is greater than n− 3 for n ≥ 7.

Then the graph G is in the �rst class, i.e., G = G2 : (Ks ∪ Kh) for some s and h satisfying
s+ h+ 2 = n. This graph has size at most

1 + 2(s+ h) +

(
s

2

)
+

(
h

2

)
=
s2 + h2 + 3s+ 3h+ 2

2
=
n(n− 1)

2
− hs.

Now, hs = h(n− 2−h) is not greater than n− 3 only for h = 1 or s = 1, which means that the
vertex v in K1 has only 2 neighbours out of n− 1 possible, so all the excluded edges were incident
to v.

To complete the proof we show that the exceptional pair {x0, y0} consists of the neighbours x, y
of v. It is clear that there is no Hamiltonian path between them. Observe that a graph constructed
by contracting the edge xv is a complete graph. For two vertices u1, u2 di�erent than v we can
contract the edge xv, �nd any u1, u2-path containing the edge xy and then expand xv. If u1 = v
and u2 6= x we proceed similarly as before, �nding x, u2-path and appending the edge vx in the
beginning. Eventually, if u1 = v and u2 = x we repeat the previous steps, replacing x with y.

Lemma 6. Let G be a connected AP graph of even order that satis�es inequality (1). If there exist
two nonadjacent vertices x, y of G such that d(x) + d(y) ≤ 5, then G is traceable.

Proof. Like in the proof of Lemma 3, we argue by contradiction considering G′ = G − {x, y}.
A similar edge counting gives us that there are only |G′| − 3 edges missing from Kn−2. By Lemma
3 at least one of x, y must have 3 neighbours in G′, say x, so we have three pairs of neighbours
of x. Lemma 5 guarantees that we can choose a pair for which there is a Hamiltonian path in G′

which we can extend to a Hamiltonian cycle in G− y and then to a Hamiltonian path in G.

The next lemma was proved in [5] and follows from a result of Woodall [9].
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Lemma 7. ([5]) For any positive integer δ, if n = |G| and

||G|| >
(
n− δ
2

)
+

(
δ + 1

2

)

then c(G) > n− δ, where c(G) is the length of the longest cycle in G.

We also introduce a sun with two rays graph, which consists of a cycle with appended two
hanging vertices u1, u2. We demand that each vertex on a cycle has degree 2 or 3. If x1, x2 are the
neighbours of, respectively, u1 and u2 on the cycle and between x1 and x2 there are a and b vertices
on the cycle (on both sides, therefore the whole graph has a+ b+ 4 vertices), then we denote this
graph as Sun(a, b). Kalinowski, Pil±niak, Wo¹niak and Zioªo [6] characterized all on-line AP suns
with two rays what is summarized in Table 1.

a b

0 arbitrary
1 ≡ 0 (mod 2)
2 6≡ 3 (mod 6), 3,9,21
3 ≡ 0 (mod 2)
4 ≡ 2,4 (mod 6), [4, 19] \ {15}
5 ≡ 2,4 (mod 6), 6, 18
6 6,7,8,10,11,12,14,16
7 8,10,12,14,16
8 8,9,10,11,12
9 10,12

Table 1: On-line AP suns

At the end of this section we state a result of Li and Ning [8]. By Bk
n we denote a graph

obtained from Kn,n by deleting all edges of its subgraph Kn−k,k.

Lemma 8. ([8]) Let G be a balanced bipartite graph of order 2n. If δ(G) ≥ k ≥ 1, n ≥ 2k + 1 and

||G|| > n(n− k − 1) + (k + 1)2

then G is Hamiltonian unless G is a subgraph of Bk
n.

Corollary 9. Let G be a balanced bipartite graph of order 2n. If δ(G) ≥ 1, n ≥ 3 and

||G|| ≥ n(n− 2) + 4

then G is traceable unless G is a subgraph of B1
n.

Proof. We add any edge e to satisfy a strict inequality in Lemma 8 for k = 1. If G + e is
Hamiltonian, then G is traceable, otherwise G + e is a subgraph of B1

n. Such a subgraph is just
any balanced bipartite graph with a vertex of degree 1, but we have δ(G) ≥ 1, so in that case G
is also a subgraph of B1

n.
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3. Proof of Theorem 1

By de�nition, if a graph is on-line AP, then it is also AP. Let G be connected AP graph of order
n, satisfying inequality (1). We also assume that G is not traceable, since otherwise G would be
on-line AP.

By Lemma 7 with δ = 3, there is a cycle C of length at least n − 2 in G. If C has length
n− 1 or n, then G is traceable. Therefore we assume that C has length exactly n− 2. Denote the
vertices outside C as u, v, and assume deg(u) ≤ deg(v). Then uv 6∈ E(G), otherwise G would be
traceable.

In this proof we �rst consider the odd values of n and resolve them using Table 1. Then for
any of the even orders of G we �nd a set of edges between the vertices of C with the following
property: for any edge e in this set, if e ∈ E, then G is traceable. We prove that if this set induces
a clique of order n

2
, then the case is completed. Moreover, note that if this set is too large, then

we can have a contradiction with the assumptions.
If n is odd, then G has a Sun(a,b) as a spanning subgraph with a+ b being odd and equal to at

most 9. A short look at Table 1 shows that any such sun is on-line AP, therefore G has an on-line
AP spanning subgraph and so it is on-line AP itself. In the rest of the proof we assume that n is
even.

Let C = v1v2 . . . vn−2v1. In the further reasoning we say that we exclude an edge e if the
existence of e in G would imply either traceability of G or a contradiction with the assumptions.
We claim the following.

Claim 1. Let vi, vj have both a neighbour outside the cycle C, not necessarily the same one. If

vi+1vj+1 ∈ E(G) or vi−1vj−1 ∈ E(G), then G is traceable.

Proof. If vvi, uvj ∈ E, then the Hamiltonian path would be: uvi . . . vj+1vi+1 . . . vjv. For vi−1vj−1
reverse the ordering of the cycle. If vvi, vvj ∈ E or uvi, uvj ∈ E, then the above path becomes a
cycle of length n− 1 that can be extended to a Hamiltonian path.

By Lemma 6, we deduce that deg(u) + deg(v) ≥ 6 and deg(v) ≥ 3. Another look at Table 1
reveals that if |C| ∈ {6, 8, 10, 12} (which means that Sun(a, b), with a + b ∈ {4, 6, 8, 10}, is as a
spanning subgraph of G) and if vv1, uv2k ∈ E for some k (which means that both of a, b are even),
then the whole graph is on-line AP since it contains an on-line AP sun as a spanning subgraph.
Hence the only possible edges from u, v to the cycle C have ends with indices of the same parity.

For n = 8, we have |C| = 6 and to avoid the neighbours of v being consecutive, we can only
choose them to be (up to isomorphism) v1, v3 and v5. But then by Claim 1, we exclude the
edges v2v4, v2v6 and v4v6 which gives us an independent set {u, v, v2, v4, v6} of size 5 and makes it
impossible for G to be AP since there cannot be a perfect matching.

For n = 10 the cycle C has length 8, so v has to have 3 neighbours whose indices are consecutive
numbers of the same parity. Without loss of generality let the neighbours of v be v1, v3 and v5.
Then by Claim 1, the edges v2v4, v2v6, v4v6, v8v2, v8v4 cannot appear in the graph. Now, if v6v8 6∈ E,
then we get an independent set of order 6 which again gives a contradiction. Otherwise, note that
we can assume that deg(u) = deg(v) = 3 and that all the neighbours of u, v are common, since
connecting u or v with v7 immediately excludes the edge v6v8. Then we exclude the edges v2v7 and

5



v4v7, otherwise there would exist Hamiltonian paths uv1vv5v4v3v2v7v6v8 and uv5vv1v2v3v4v7v6v8,
respectively. In total, we have excluded 7 edges which gives

||G|| ≤ d(u) + d(v) + ||K8|| − 7 = 6 +

(
8

2

)
− 7 = 27,

which is less than in our assumption, i.e.,
(
7
2

)
+ 7 = 28.

Claim 2. If G has an independent set of size n
2
, for n ∈ {12, 14}, then either G is traceable or G

is not AP.

Proof. Let S be such an independent set. If there is a superset of S that is also independent,
then G has no perfect matching and is not AP. Therefore assume that any vertex in V \ S has a
neighbour in S and since G is connected, every vertex in S has a neighbour in V \ S.

For a moment we ignore the edges inside V \ S. The number of edges between S and V \ S is
at least

||G|| − ||Kn
2
|| ≥

(
n− 3

2

)
+ 7−

(
n
2

2

)
=

3

8
n2 − 13

4
n+ 13.

Since for n ≥ 12 the inequality 3
8
n2− 13

4
n+13 ≥ n

2
(n
2
− 2) + 4 is satis�ed, then, by Corollary 9, to

complete the proof of the claim we need to consider the case when there is a vertex v ∈ V with only
one neighbour in the other set of bipartition. For n = 12 we have at most 28 edges between S and
V \ S, and when we exclude v, there are at most 27 edges between them, out of the maximum of
30 edges in a complete bipartite graph K5,6. Then we can easily �nd a Hamiltonian path starting
from v. The same situation is for n = 14, when excluding v yields 40 out of maximum 42 edges in
K6,7.

Now we can consider n = 12. The cycle C has length 10. Recall that deg(u) + deg(v) ≥ 6,
deg(v) ≥ 3, and if vv1 ∈ E, then u and v can have edges only to vertices of odd indices. There
are 5 such vertices so if there are 4 neighbours of u, v on the cycle, then their indices are four
consecutive odd numbers (modulo 10), without loss of generality v1, v3, v5, v7. Thus by Claim 1
there is an independent set {v2, v4, v6, v8, u, v} of size 6 which using Claim 2 �nishes the case. So
there are exactly three neighbours of u, v on C and they are common neighbours. This gives two
cases up to symmetry: when these neighbours are either v1, v3, v5 or v1, v3, v7.

It su�ces to show that there are eight edges that cannot be in E since otherwise G would be
traceable, because

d(u) + d(v) + ||K10|| − 8 = 42 < 43 =

(
9

2

)
+ 7.

1. The common neighbours of u, v are v1, v3, v5. Then by Claim 1, we exclude edges v2v4, v2v6,
v4v6, v2v10, v4v10. If v6v10 6∈ E(G), we get an independent set of size 6 = 12

2
. Otherwise, we

exclude the following edges.
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edge Hamiltonian path
v2v9 uv1vv5v4v3v2v9v8v7v6v10
v4v9 uv5vv1v2v3v4v9v8v7v6v10
v2v7 uv1vv5v4v3v2v7v8v9v10v6

Table 2

2. The common neighbours of u, v are v1, v3, v7. Then by Claim 1, we exclude edges v2v4, v2v6,
v2v8, v2v10, v4v8, v6v10. Next we exclude v6v8 using a path uv7vv1v2v3v4v5v6v8v9v10, which is
a seventh excluded edge. The last one is either v8v10 or v6v9 since both of them would enable
a path uv7vv1v2v3v4v5v6v9v8v10.

The remaining case is n = 14. The cycle C has length 12. There are six vertices with odd
indices, so if �ve of them are the neighbours of u or v, then they represent �ve consecutive odd
numbers modulo 12, without loss of generality, v1, v3, v5, v7 and v9. Then by Claim 1, the set
{v2, v4, v6, v8, v10, u, v} is independent and by Claim 2 this case can be omitted. Then each of u, v
has degree at most 4 and at least 2. Moreover, they must have at least two common neighbours.

Like for smaller n, if we exclude 13 edges, then we are done since

deg(u) + deg(v) + ||K12|| − 13 ≤ 8 + 66− 13 = 61 < 62 =

(
11

2

)
+ 7.

Up to symmetry, we have the following cases, setting �rst two common neighbours and then an
additional neighbour for v. The vertex u can be adjacent to two consecutive odd-indexed vertices,
say v1, v3 (1), then the neighbours of v can be either v1, v3, v5 (1a) or v1, v3, v7 (1b). If u is adjacent
to v1, v5 (2), then the possibilities for the neighbours of v are v1, v3, v5 (2a) or v1, v5, v7 (2b) or
v1, v5, v9 (2c). Finally, if the neighbours of u are v1, v7 (3), then the only option for v modulo
rotations and symmetries is v1, v3, v7 (3a). To make the proof shorter, we invoke cases (1a), (2b)
and (2c) in case (2a) as well as (1a) and (3a) in case (1b). We have enumerated this now to show
that none of the cases refers to itself.

(1a) The neighbours of u are v1, v3, the neighbours of v are v1, v3, v5 (see Figure 1). By Claim 1,
we exclude edges v2v4, v2v6, v4v6, v2v12, v4v12. Then we exclude one of v4v7 or v6v8, since if
they were both in E, we would have a path v12v11v10v9v8v6v7v4v5vv3uv1v2. Let us suppose
that v4v10 ∈ E. Then we can exclude seven edges (in Table 3 below), that gives a total of 13
which is too many. Table 3 should be read as follows: a row with an edge e and a path P
means that if v4v10 ∈ E and e ∈ E, then G is traceable and has a Hamiltonian path P . A
row with two edges e, f means that if v4v10 ∈ E and both e, f ∈ E, then P is a Hamiltonian
path in G (so either e or f is excluded).

We repeat these arguments for edges v2v10, v6v12, v6v10 and v10v12, each time decreasing the
number of edges to exclude. This yields an independent set {v2, v4, v6, v10, v12, u, v} of size 7,
which by Claim 2 completes the case.
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Figure 1: Graph G in case (1a)

edge Hamiltonian path
v6v11 v12v11v6v7v8v9v10v4v5vv3uv1v2
v6v12 v11v12v6v7v8v9v10v4v5vv3uv1v2
v9v12 v6v7v8v9v12v11v10v4v5vv3uv1v2
v2v9 v6v7v8v9v2v1uv3vv5v4v10v11v12
v2v11 v6v7v8v9v10v4v5vv3uv1v2v11v12
v4v11 v12v11v4v10v9v8v7v6v5vv3uv1v2
v4v9 v12v11v10v4v9v8v7v6v5vv3uv1v2

Table 3: Excluding v4v10

edge Hamiltonian path
v9v12 v6v7v8v9v12v11v10v2v1uv3vv5v4
v6v12 v9v8v7v6v12v11v10v2v1uv3vv5v4
v6v11 v12v11v6v7v8v9v10v2v1uv3vv5v4
v2v9 v12v11v10v2v9v8v7v6v5v4v3vv1u
v2v11 v12v11v2v10v9v8v7v6v5v4v3vv1u
v4v11 v6v7v8v9v10v2v1uv3vv5v4v11v12

Table 4: Excluding v2v10

edge Hamiltonian path
v4v11 v10v9v8v7v6v12v11v4v5vv3uv1v2
v4v9 v8v7v6v12v11v10v9v4v5vv3uv1v2
v2v7 v8v9v10v11v12v6v7v2v1uv3vv5v4
v2v9 v10v11v12v6v7v8v9v2v1uv3vv5v4
v2v11 v10v9v8v7v6v12v11v2v1uv3vv5v4

Table 5: Excluding v6v12

edge Hamiltonian path
v2v9 v12v11v10v6v7v8v9v2v1uv3vv5v4
v4v9 v12v11v10v6v7v8v9v4v5vv3uv1v2

v6v11 or v2v7 v12v11v6v10v9v8v7v2v1uv3vv5v4
v4v11 or v9v12 v10v6v7v8v9v12v11v4v5vv3uv1v2

Table 6: Excluding v6v10

edge Hamiltonian path
v2v11 v6v7v8v9v10v12v11v2v1uv3vv5v4
v4v11 v6v7v8v9v10v12v11v4v5vv3uv1v2

v6v11 or v2v9 v8v7v6v11v12v10v9v2v1uv3vv5v4
Table 7: Excluding v10v12

(1b) The neighbours of u are v1, v3, the neighbours of v are v1, v3, v7. Claim 1 allows us to
exclude edges v2v4, v2v6, v2v8, v2v12, v4v8, v6v12. Then v4v12 can be excluded using a path
v2v1uv3vv7v6v5v4v12v11v10v9v8. Consider now an additional sixth edge from {u, v} to the cycle
C. If it ends in v5 or v11, then we can use the previous case (1a). If the end is v7, the case
(3a) can be used. So we can assume that there is an edge from u or v to v9, which by Claim
1 excludes the edges v8v12, v6v8, v8v10, v2v10, v4v10. We �nish the case, removing the 13th
edge, which is one of v2v5, v4v6, with a Hamiltonian path v2v5v4v6v7v8v9v10v11v12v1uv3v.
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(2a) The neighbours of u are v1, v5, the neighbours of v are v1, v3, v5. Due to Claim 1, we exclude
edges v2v4, v2v6, v4v6, v2v12, v4v12. Like in the previous case, we consider the additional edge
from u, v. If its end is in v3, then we use case (1a), for v7 and v11 we use (2b), and for v9 we
use (2c).

(2b) The neighbours of u are v1, v5, the neighbours of v are v1, v5, v7. It follows from Claim 1
that the edges v2v6, v2v8, v4v6, v4v12, v6v8, v6v12 can be excluded. Then we exclude the edge
v4v8 with a Hamiltonian path v12v11v10v9v8v4v3v2v1uv5v6v7v and the edge v2v12 with a path
v4v3v2v12v11v10v9v8v7vv1uv5v6. Now if we exclude the edges v8v12 and v2v4, then we end up
with an independent set {v2, v4, v6, v8, v12, u, v} of size 7 on vertices. We present in the tables
below how to accomplish it, like in the case (1a).

edge Hamiltonian path
v6v11 v10v9v8v12v11v6v7vv5v4v3v2v1u
v6v9 v10v11v12v8v9v6v7vv5v4v3v2v1u
v4v9 v10v11v12v8v9v4v3v2v1uv5v6v7v
v4v11 v10v9v8v12v11v4v3v2v1uv5v6v7v
v2v11 v6v7vv5v4v3v2v11v10v9v8v12v1u

Table 8: Excluding v8v12

edge Hamiltonian path
v3v6 v4v2v3v6v7vv5uv1v12v11v10v9v8
v3v8 v12v11v10v9v8v3v4v2v1uv5v6v7v
v3v12 v4v2v3v12v11v10v9v8v7vv1uv5v6

v8v10 or v6v9 v12v11v10v8v9v6v7vv5v4v3v2v1u
Table 9: Excluding v2v4

(2c) The neighbours of u are v1, v5, the neighbours of v are v1, v5, v9. By Claim 1, we exclude
the edges v2v6, v2v10, v4v8, v4v12, v6v10 and v8v12. The remaining seven edges to exclude are
listed in Table 10 below.

edge Hamiltonian path
v3v6 v4v2v3v6v7vv5uv1v12v11v10v9v8
v3v8 v12v11v10v9v8v3v4v2v1uv5v6v7v
v3v12 v4v2v3v12v11v10v9v8v7vv1uv5v6
v3v6 v4v2v3v6v7vv5uv1v12v11v10v9v8
v3v8 v12v11v10v9v8v3v4v2v1uv5v6v7v
v3v12 v4v2v3v12v11v10v9v8v7vv1uv5v6

v8v10 or v6v9 v12v11v10v8v9v6v7vv5v4v3v2v1u
Table 10

(3a) The neighbours of u are v1, v7, the neighbours of v are v1, v3, v7. We use Claim 1 to exclude
the edges v2v4, v2v6, v2v8, v2v12, v4v8 and v6v12. Next we exclude the edge v4v12 using the path
uv1v2v3vv7v6v5v4v12v11v10v9v8 and the edge v6v8 using the path uv7vv1v2v3v4v5v6v8v9v10v11v12.
Now we miss only the edges v4v6 and v8v12 to have an independent set {v2, v4, v6, v8, v12, u, v}
of size 7. We exclude them successively in the tables below.
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edge Hamiltonian path
v2v9 uv1vv7v6v5v4v3v2v9v8v12v11v10
v4v9 v2v3vv1uv7v6v5v4v9v8v12v11v10
v6v9 v2v3vv1uv7v8v12v11v10v9v6v5v4
v2v11 uv1vv7v6v5v4v3v2v11v12v8v9v10
v4v11 uv7vv3v2v1v12v8v9v10v11v4v5v6

Table 11: Excluding v8v12

edge Hamiltonian path
v2v5 vv3v2v5v4v6v7v8v9v10v11v12v1u
v5v8 uv7v6v4v5v8v9v10v11v12v1v2v3v
v5v12 uv1v2v3v4v6v5v12v11v10v9v8v7v

v2v10 or v9v12 uv1vv3v2v10v11v12v9v8v7v6v5v4
Table 12: Excluding v4v6

Since all the cases has been completed, the proof is now �nished.
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