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Abstract

A graph G of order n is called arbitrarily partitionable (AP, for
short) if, for every sequence (n1, . . . , nk) of positive integers with n1+
. . .+nk = n, there exists a partition (V1, . . . , Vk) of the vertex set V (G)
such that Vi induces a connected subgraph of order ni, for i = 1, . . . , k.
In this paper we consider the on-line version of this notion, defined in
a natural way.

We prove that if G is a connected graph such that α(G) ≤ ⌈n2 ⌉
and the degree sum of any pair of non-adjacent vertices is at least
n−3, then G is on-line arbitrarily partitionable except for two graphs
of small orders. We also prove that if G is a connected graph of order
n and size ‖G‖ >

(n−3
2

)
+6, then G is on-line AP unless n is even and

G is a spanning subgraph of a unique exceptional graph. These two
results imply that AP dense graphs satisfying one of the above two
assumptions are also on-line AP. This is in contrast to sparse graphs
where only few AP graphs are also on-line AP. While proving our
main results, we also obtain some sufficient conditions for a graph to
be traceable.

Keywords: partitions of graphs, traceable graph, Erdős-Gallai con-
dition, Ore condition, perfect matching.
Mathematics Subject Classifications: 05C70, 05C45, 05C40.

∗The research was partially supported by the Polish Ministry of Science and Higher
Education.
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1 Introduction

We use standard graph theory terminology and notation. The number of
edges of a graph G is called the size of G and is denoted by ‖G‖. A graph
G is called traceable if it contains a Hamiltonian path, i.e. a path through
all vertices of G. By c(G) we denote the circumference of a graph G, i.e.
the length of a longest cycle. If C is a cycle with a given orientation and
x ∈ V (C), then by x+ and x− we denote a successor and a predecessor of x
along the orientation of C. We also use the notation

σ2(G) = min{d(x) + d(y) : xy /∈ E(G)}.

If G1 and G2 are two graphs with disjoint vertex sets, then by G1 ∨ G2 we
denote their join, that is a graph with the vertex set V (G1)∪V (G2) and the
edge set E(G1 ∨G2) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}.

Let us now introduce some terminology for the problem we deal with.
If G = (V,E) is a graph of order n, then a sequence τ = (n1, . . . , nk) of
positive integers is called admissible for G if n1 + . . . + nk = n. Such an
admissible sequence τ is said to be realizable in G if the vertex set V can
be partitioned into k parts (V1, . . . , Vk) such that |Vi| = ni and the subgraph
G[Vi] induced by Vi is connected, for every i = 1, . . . , k. We say that G is
arbitrarily partitionable (AP, for short) if every admissible sequence τ for G
is realizable in G.

The notion of AP graphs was introduced by Barth, Baudon and Puech
in [1] (and independently by Horňák and Woźniak in [12]), motivated by a
problem concerning graphs modelling parallel systems (parallel computing,
networks of workstations, etc.), considered as networks connecting different
computing resources. Suppose there are k users, where the i-th one needs ni

resources from our network. The subgraph induced by the set of resources
attributed to each user should be connected and each resource should be
attributed to one user. So we are seeking a realization of the sequence τ =
(n1, . . . , nk) in this graph. Suppose that we want to do it for any number of
users and any sequence of request. Thus, such a network should be an AP
graph.

The general concept of arbitrarily partitionable graphs, sometimes also
called arbitrarily vertex decomposable [12] or fully decomposable [7] or just
decomposable [1], has spawned some thirty papers and is still developing
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(examples of recent papers are [3, 4, 7, 15, 20]). Here we quote only the
results we directly use in this paper.
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Figure 1: Cat(a, b) with a = 5 and b = 8

By Cat(a, b), where 2 ≤ a ≤ b, we denote a caterpillar with three leaves
obtained from the star K1,3 by substituting two of its edges by paths of orders
a and b, respectively. Figure 1 shows Cat (5, 8). One of the earliest results
about AP graphs is the following one proved independently by the authors
of this concept.

Theorem 1 [1, 12] The caterpillar Cat (a, b) is AP if and only if a and b
are relatively prime.

A sun with r rays is a graph of order n ≥ 2r with r independent hanging
edges, called rays, whose deletion yields a cycle Cn−r. A sun with two rays
(cf. Figure 2) such that the deletion of vertices of degree three divides Cn−r

into two paths of orders a and b, where 0 ≤ a ≤ b, is denoted by Sun(a, b).
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Figure 2: Sun(a, b) with two rays

In [13], we found all AP suns with at most three rays. Our result for suns
with two rays follows.

Theorem 2 [13] Sun (a, b) is AP if and only if at least one of the numbers
a, b is even.
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a b

2 ≡ 1 (mod 2)
3 ≡ 1, 2 (mod 3)
4 ≡ 1 (mod 2)
5 6, 7, 9, 11, 14, 19
6 ≡ 1, 5 (mod 6)
7 8, 9, 11, 13, 15
8 11, 19
9 11
10 11
11 12

Table 1: Values a, b such that Cat(a, b) is on-line AP

The definition of AP graphs has many variations. One of them, even
more natural from the point of view of applications to computer science, is
the following concept of on-line arbitrarily partitionable graphs introduced
by Horňák, Tuza and Woźniak in [11]. The definition is natural. We are
not given a whole admissible sequence at the beginning but we get its ele-
ments one by one, and each time we have to choose a connected subgraph
of prescribed order, having no possibility to change this choice later. If this
procedure can be accomplished for any admissible sequence, then the graph
is called on-line arbitrarily partitionable (on-line AP, for short).

Horňák, Tuza and Woźniak [11] characterized all on-line AP trees.

Theorem 3 [11] A tree T is on-line AP if and only if T is either a path or a
caterpillar Cat (a, b) with a and b given in Table 1 or the tripode S(3, 5, 7).

It follows that every on-line AP tree has at most three vertices. This is
in contrast with the following result of Barth, Fournier and Ravaux [2].

Theorem 4 [2] For every positive integer l there exists an AP tree with l
leaves.

Moreover, even for trees with three leaves, on-line AP trees constitute
a small subclass of AP ones. For instance, Cat(5, b) is AP for every b 6≡
0 (mod 5) by Theorem 1, but it is never on-line AP for b > 20. That means
that on-line AP trees constitute a relatively small subset of the set of all AP
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a b

0 arbitrary
1 ≡ 0 (mod 2)
2 6≡ 3 (mod 6), 3, 9, 21
3 ≡ 0 (mod 2)
4 ≡ 2, 4 (mod 6), [4, 19] \ {15}
5 ≡ 2, 4 (mod 6), 6, 18
6 6, 7, 8, 10, 11, 12, 14, 16
7 8, 10, 12, 14, 16
8 8, 9, 10, 11, 12
9 10, 12

Table 2: Values a, b such that Sun(a, b) is on-line AP

trees. A similar situations holds for suns. In [14], we characterized all on-line
AP suns with any number of rays. We showed that the number of rays in an
on-line AP sun does not exceed four, and we proved the following for suns
with two rays.

Theorem 5 [14] Sun (a, b) is on-line AP if and only if a and b take values
given in Table 2.

Observe that, in particular, there are only finitely many on-line AP suns
Sun(a, b) with both a and b greater than 5. It follows that among sparse
graphs, like trees and suns, AP graphs rather rarely are also on-line AP.
This is not the case for dense graphs as we show in this paper.

The following obvious fact plays a fundamental role in our study.

Proposition 6 [11] Every traceable graph is on-line AP.

Some sufficient conditions for a graph to be traceable have been weakened
to obtain sufficient conditions for a graph to be AP. The first one is the well-
known Ore condition.

Theorem 7 If σ2(G) ≥ n− 1, then G is traceable.

This condition was first adapted for AP graphs by Marczyk, among others
in [18].
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Figure 3: Two exceptional non-AP graphs with σ2 ≥ n− 3 and α(G) ≤ ⌈n
2
⌉

Theorem 8 [18] If G is a connected graph with σ2(G) ≥ n− 3 and α(G) ≤
⌈n
2
⌉, then G is AP or G is one of two graphs G6, G7 depicted in Figure 3.

Note that the connectivity of G and the inequality α(G) ≤ ⌈n
2
⌉ are obvious

necessary conditions for a graph G to be AP.
Another sufficient condition for traceability follows from a paper [9] of

Erdős and Gallai (cf. e.g. [15]).

Theorem 9 If G is a connected graph such that

‖G‖ >

(
n− 2

2

)
+ 2,

then G is traceable.

Recently, Kalinowski, Piĺsniak, Schiermeyer and Woźniak in [15] proved the
following.

Theorem 10 [15] If G is a connected graph of order n ≥ 22 and size

‖G‖ >

(
n− 4

2

)
+ 12,

then G is AP unless G is a spanning subgraph of one of the graphs depicted
in Figure 4 .

The aim of this paper is to prove the following result which is a conse-
quence of Theorem 18, the main result of Section 2, and Theorem 24, the
main result of Section 3.

6



b

b b

Kn−2

2|n

b b

b b b

Kn−3

2|n

b

b b b

Kn−3

b

b b b

Kn−3

3|n

Figure 4: Four graphs such that every non-AP graph G of order n ≥ 22 and
size ‖G‖ >

(
n−4
2

)
+ 12 is a spanning subgraph of one of them (below each

graph, requirements on the order n are given)

Theorem 11 If G is a graph of order n such that

σ2(G) ≥ n− 3

or

‖G‖ >

(
n− 3

2

)
+ 6,

then G is AP if and only if G is on-line AP.

2 Ore-type condition

In the proof of Theorem 14, which is the main result of this section, we make
use of the following two classical results.

Theorem 12 (Posa [19]) Let G be a connected graph of order n ≥ 3 such
that

σ2(G) ≥ s.

Then G contains a path of length s or G is Hamiltonian.

Theorem 13 (Bermond [6], Linial [17]) Let G be a 2-connected graph such
that

σ2(G) ≥ s.

Then G contains a cycle of length at least s or G is Hamiltonian.
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Now, from the exactly the same assumptions as in Theorem 8 we derive
a stronger conclusion.

Theorem 14 If G is a connected graph with σ2(G) ≥ n−3 and α(G) ≤ ⌈n
2
⌉,

then G is on-line AP or G ∈ {G1, G2}.
Proof. Assume first that G = (V,E) is 2-connected. It follows from Theo-
rem 13 that the circumference c(G) is at least n − 3. If c(G) ≥ n − 1, then
G is traceable, and hence on-line AP.

Suppose first that c(G) = n − 2. Let C be a cycle of length n − 2 in
G, and let u, v be the two vertices of G outside C. If uv ∈ E, then G is
traceable. Then suppose uv /∈ E. Hence, d(u) + d(v) ≥ n − 3. Assume
d(v) ≤ d(u). As C is a longest cycle, no two consecutive vertices of C can
be neighbours of the same vertex outside C. Therefore, both vertices u and
v are of degree at most n−2

2
. Thus, n−4

2
≤ d(v) ≤ d(u) ≤ n−2

2
. Suppose,

contrary to the claim, that G is not on-line AP, whence also not traceable.
Therefore, x−, x+ /∈ N(u) ∪N(v) whenever x ∈ N(u) ∪N(v).

If n is odd, then d(v) = d(u) = n−3
2

. It follows that N(u) = N(v) for
n ≥ 7. Then there exists a vertex x ∈ V (C) such that x−u, x+v ∈ E. So
G is spanned by Sun(1, n− 5) which is on-line AP for odd n by Theorem 5,
whence G is also on-line AP. If n = 5, then G has to be traceable for it is a
bull (a graph isomorphic to a letter A) what can be easily seen.

Let n be even. Hence d(u) = n−2
2

, i.e. u is adjacent to every second vertex
of C. Then clearly, N(v) ⊆ N(u). The set A = {x+ : xu ∈ E} ∪ {u, v} is
independent, and |A| = n

2
+ 1, contrary to the assumption.

Now, consider the case c(G) = n− 3. Let C be a longest cycle in G and
let V \ V (C) = {u, v, w}. If G[{u, v, w}] is connected, then G is traceable.
Suppose then that E(G[{u, v, w}]) = {uv}. Hence, d(w) ≤ n−3

2
for C is

a longest cycle, so w cannot be adjacent to two successive vertices on C.
Consequently, d(u), d(v) ≥ n−5

2
+ 1 since σ2(G) ≥ n − 3. Therefore, it is

easily seen that there exists a vertex x ∈ V (C) such that either x− ∈ N(u)
and x+ ∈ N(v) or x+ ∈ N(u) and x− ∈ N(v). But then G would contain a
cycle longer than C.

Suppose now that the vertices u, v, w comprise an independent set. Then
at least two of them, say u and v, are of degree at least n−3

2
since σ2(G) ≥

n − 3. But with our assumptions this is possible only when d(w) = d(u) =
d(v) = n−3

2
and N(u) = N(v) = N(w). Then G has an independent set

A = {x+ : x ∈ N(u)}∪ {u, v, v} of cardinality n−3
2

+ 3 which is greater than
⌈n
2
⌉, a contradiction.
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Now, assume that G has a cut vertex z, and let s be the number of
connected components of G−z. Suppose first that s ≥ 3. Let P be a longest
path in G. By Theorem 12, the order of P is at least n− 2, i.e. there are at
most two vertices outside P . Then it is easy to see that z ∈ V (P ) and s = 3
since σ2 ≥ n− 3. If P is of order n− 2, then the two vertices u, v outside P
are of degree 2, and G− z has three connected components with vertex sets
V1, V2 and V3 = {u, v}. For every x ∈ V1 ∪ V2 we have d(x) + d(u) ≥ n − 3,
hence d(x) ≥ n− 5. On the other hand, if x ∈ Vi, then d(x) ≤ |Vi|, i = 1, 2,
since P is a longest path in G. Therefore, |V1| = |V2| = 2 and d(x) = 2 for
each x ∈ V1 ∪ V2. That is, G is isomorphic to G7 of Figure 3.

Then suppose there is only one vertex outside P . Hence, s = 3. Analo-
gously as in the previous case, we infer that |V1| = |V2| = 2 and d(x) = 2 for
each x ∈ V1 ∪ V2. Thus, G is isomorphic to G6.

Now, let s = 2, i.e. G−z has two connected components H1, H2. To prove
that G is traceable it suffices to show that each graph Hi is Hamiltonian or at
least it contains a Hamiltonian path starting with a neighbour of z. Denote
|Hi| = ni, i = 1, 2, and assume n1 ≤ n2. For every two non-adjacent vertices
x, y ∈ V (H1) we have dH1(x) + dH1(y) ≥ n − 5 since σ2(G) ≥ n − 3. As
n = n1 + n2 + 1 and n1 ≤ n2, we have σ2(H1) ≥ 2n1 − 4. Hence, for
n ≥ 4 the graph H1 is Hamiltonian due to well-known Ore’s condition for
hamiltonicity. If n ≤ 3, then it is not difficult to verify that G contains a path
from z through all vertices of H1 because s = 2. If n1 = n2, then the same
holds for H2. Then suppose n1 < n2. For each x ∈ V (H2) and y ∈ V (H1),
we have dH2(x) ≥ σ2(G) − dG(y) − 1 ≥ n− 3 − n1 − 1 = n2 − 3. Then H2 is
Hamiltonian whenever n2 ≥ 3 by the well-known Dirac condition. If n2 = 2,
then it is easy to check that G is a traceable graph of order four. �

The following three propositions directly follow from the proof of Theo-
rem 14, and they might be of interest as such. The first two of them can be
viewed as extensions of Ore’s Theorem 7.

Proposition 15 If G is a graph of order n ≥ 8 with connectivity κ(G) = 1
and σ2(G) ≥ n− 3, then G is traceable. �

Proposition 16 If G is a 2-connected graph of even order n with σ2(G) ≥
n− 3, c(G) ≥ n− 2 and α(G) ≤ n

2
, then G is traceable. �
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Proposition 17 If G is a 2-connected graph of odd order n such that σ2(G) ≥
n− 3 and c(G) ≥ n− 2, then G is on-line AP. �

Since connectivity and the inequality α(G) ≤ ⌈n
2
⌉ are necessary conditions

for a graph to be AP, Theorem 8 and Theorem 14 immediately imply the
following result.

Theorem 18 If G is a graph of order n with σ2(G) ≥ n− 3, then G is AP
if and only if G is on-line AP. �

3 Erdős-Gallai-type condition

The main result of this section is the following theorem.

Theorem 19 If G is a connected graph of order, n with either n ≤ 7 or
n ≥ 15, and size

‖G‖ >

(
n− 3

2

)
+ 6,

then G is traceable unless G is a spanning subgraph of the graph K2 ∨K1 ∨
Kn−3 depicted in Figure 5.

b

b b

Kn−2

Figure 5: The spanned supergraph K2 ∨ K1 ∨ Kn−3 of every non-traceable
graph G of order n ≥ 15 and size ‖G‖ >

(
n−3
2

)
+ 6

The initial part of the proof of Theorem 19 is similar to that of the
proof of Theorem 10 in [15]. We shall make use of two propositions proved
therein, which are consequences of theorems of Woodall [21] and Erdős [8],
respectively.
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Proposition 20 [15] For any positive integer δ, if n = |G| and

‖G‖ >

(
n− δ

2

)
+

(
δ + 1

2

)
,

then c(G) > n− δ. �

For another proposition, define

g(n, δ) = max

{(
n− δ − 1

2

)
+ δ(δ + 1),

(
n + 1 − ⌊n

2
⌋

2

)
+
⌊n

2

⌋2
− n

}
.

Proposition 21 [15] Let G be a graph of order n and with minimum degree
δ. If δ ≥ n−1

2
or ‖G‖ > g(n, δ), then G is traceable.

Proof of Theorem 19. Suppose ‖G‖ >
(
n−3
2

)
+ 6 and δ = δ(G). It

follows from Proposition 21 that G is traceable if δ ≥ n−1
2

or g(n, δ) ≤ g(n, 3).

Observe that
(
n−δ−1

2

)
+ δ(δ + 1) is a quadratic polynomial with respect to δ,

so the latter inequality holds whenever g(n, δ) ≥
(
n+1−⌊n

2
⌋

2

)
+
⌊
n
2

⌋2 − n. This
is the case when δ ≥ 2 and

(
n− 3

2

)
+ 6 ≥

(
n + 1 − ⌊n

2
⌋

2

)
+
⌊n

2

⌋2
− n.

We solve this inequality regarding to the parity of the order n of G. If n is
even, then it is equivalent to n2−22n+96 ≤ 0, so it holds if n ≥ 16 or n ≤ 6.
If n is odd, then we have n2 − 20n + 91 ≤ 0, and this holds for n ≥ 13 and
for n ≤ 7.

It follows from Proposition 20 that c(G) ≥ n− 2. Thus, to complete the
proof, we may assume that c(G) = n− 2 and δ = 1.

Let C be a longest cycle in G with a fixed orientation, and let u, v be
the vertices outside C. If uv ∈ E, then G is traceable. Otherwise, we
may assume without loss of generality that d(v) = 1 and d(u) = k ≥ 1.
Let N(u) = {u1, . . . , uk} ⊆ V (C) and X = {u+

i : ui ∈ N(u)}. Clearly,
1 ≤ k ≤ ⌊n−2

2
⌋ and X is independent as C is a longest cycle. It was proved

in [15] that with our assumptions

k∑

i=1

dC(u+
i ) ≤ k

2
c(G),
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where dC(u+
i ) = |N(u+

i ) ∩ V (C)|.
Now, let us estimate the number f(k) = ‖G‖ of edges missing in G. Since

X is independent, there are
(
k
2

)
missing edges between vertices of X . Due

to the above inequality, there are at least k(c(G)− k)− k
2
c(G) missing edges

between X and V (C)\X . Further, n−2 edges incident to v and n−1−k edges
incident to u cannot appear in G since d(v) = 1 and d(u) = k. Therefore,

f(k) ≥
(
k

2

)
+ k(c(G) − k) − k

2
c(G) + 2n− k − 3.

Setting c(G) = n− 2, we obtain the following inequality

f(k) ≥ 1

2
[−k2 + (n− 5)k + 4n− 6].

The right-hand side of the above inequality is a quadratic function that is
increasing for k ≤ n−5

2
and decreasing n−5

2
≤ k ≤ n−2

2
. Note that

(
n
2

)
−(

n−3
2

)
− 6 = 3n− 12, hence f(k) ≤ 3n− 13 since ‖G‖ >

(
n−3
2

)
+ 6. We have

f(2) = 3n − 10 ≥ 3n− 13 and f(n−2
2

) = 1
8
(n2 + 6n − 8) > 3n − 13 because

1
8
(n2 + 6n − 8) − (3n − 13) = 1

8
(n2 − 18n + 96) > 0 for every n. Therefore,

the only possibility k = 1. We have f(1) = 5
2
n − 6, and 5

2
n − 6 ≤ 3n − 13

only if n ≥ 14. This means that for k ∈ {5, 6, 7} we have c(G) > n − 2, i.e.
G is traceable. Hence, we may assume that n ≥ 15.

Consider now the subgraph G′ = G[V (C)]. Let x, y ∈ V (C) with xy /∈ E.
Denote dG′(x) + dG′(y) = d. Then

‖G′‖ >

(
n− 3

2

)
+ 6 − 2 =

1

2
(n2 − 7n + 20).

On the other hand,

‖G′‖ ≤
(
n− 4

2

)
+ d =

1

2
(n2 − 9n + 20 + 2d.)

Thus d ≥ n = |G′| + 2 > |G′| + 1. It follows from the well-known Ore’s
condition that G′ is Hamiltonian-connected. Hence, there is a Hamiltonian
path in G′ from the neighbour of u in G to the neighbour ofv in G. And this
path can be clearly extended to a Hamiltonian path of G since N(u)∩N(v) =
∅. �

Theorem 19 easily implies the following result.
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Theorem 22 Let G be a connected graph of order n ≥ 15 and size

‖G‖ >

(
n− 3

2

)
+ 6.

Then G is on-line AP unless n is even and G is a spanning subgraph of the
graph K2 ∨K1 ∨Kn−3 depicted in Figure 5.

Proof. Suppose a graph G fulfills the assumptions. If G is traceable, then it
is on-line AP. We have shown in the proof of Theorem 19 that every graph
of order n ≤ 7 and size ‖G‖ >

(
n−3
2

)
+ 6 is traceable. Then suppose G is

non-traceable and n ≥ 15. By Theorem 19, G is a spanning subgraph of the
graph K2∨K1∨Kn−3. Let v1, . . . , vn−2 be consecutive vertices of the longest
cycle C of G, and let u1, u2 be the two pendant vertices of G adjacent to
vn−2. If n is even, then clearly, G has no perfect matching, so it is not AP.

Let then n be odd, and let τ = (n1, . . . , nk) be an admissible sequence
for G. Hence at least one element of an admissible sequence is odd. Let
ni be the first such element of τ . For even elements n1, . . . , ni−1 of τ , we
choose subgraphs induced by consecutive vertices of C starting with v1 (i.e.
V1 = G[{v1, . . . , vn1}], and so on). If ni = 1, then we take Vi = {u1},
otherwise ni ≥ 3 and we take Vi = G[{u1, u2, vn−2, . . . , vn−ni+1}]. In both
cases, the remaining graph is traceable. Therefore G is on-line AP. �

To see that the assumption n /∈ {8, . . . , 14} in Theorem 19 and Theo-
rem 22 is substantial, observe that the graph G = Kn−2

2
∨ K n+2

2
of even

order n, with 8 ≤ n ≤ 14, has no perfect matching as α(G) = n
2

+ 1. There-

fore G is not AP, and hence non-traceable, while ‖G‖ >
(
n−3
2

)
+ 6. Clearly,

any spanning subgraph of G is not AP.
The case 8 ≤ n ≤ 14 was investigated by Bednarz et al. [5].

Theorem 23 [5] Let G be a graph of order n ∈ {8, . . . , 14} and size

‖G‖ >

(
n− 3

2

)
+ 6.

Then G is AP if and only if G is on-line AP.

Clearly, any spanning subgraph of the graph K2 ∨K1 ∨Kn−3 for even n
is not AP for it does not admit a perfect matching. Hence, Theorem 19 and
Theorem 23 imply the following result which in turn justifies the second part
of Theorem 11.
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Theorem 24 Let G be a graph of order n and size

‖G‖ >

(
n− 3

2

)
+ 6.

Then G is AP if and only if G is on-line AP.

The lower bound for the size of G in Theorem 24 can perhaps be improved,
but not below

(
n−5
2

)
+ 10. Indeed, consider a graph Gn of order n and

size
(
n−5
2

)
+ 11 obtained from a caterpillar Cat(5, n− 5) by substituting the

pendant paths P5 and Pn−5 by cliques K5 and Kn−5, respectively. It it is
easy to see that Gn is (on-line) AP if and only if Cat(5, n − 5) is (on-line)
AP. Thus by Theorem 1 and Theorem 3, the graph Gn is AP but not on-line
AP for every n such that n > 20 and n 6≡ 0 (mod 5).
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