Monika PILŚNIAK

Nordhaus-Gaddum Bounds for the Distinguishing Index

Preprint Nr MD 083

(otrzymany dnia 02.12.2015)

Kraków 2015

Redaktorami serii preprintów Matematyka Dyskretna są:
Wit FORYŚ (Instytut Informatyki UJ)
oraz
Mariusz WOŹNIAK (Katedra Matematyki Dyskretnej AGH)

Nordhaus-Gaddum Bounds for the Distinguishing Index

Monika Pilśniak*
AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
pilsniak@agh.edu.pl

Abstract

The distinguishing index of a graph G, denoted by $D^{\prime}(G)$, is the least number of colours in an edge colouring of G not preserved by any non-trivial automorphism. We investigate the Nordhaus-Gaddum type relation: $$
2 \leq D^{\prime}(G)+D^{\prime}(\bar{G}) \leq \max \{\Delta(G), \Delta(\bar{G})\}+2
$$ and prove that it holds for some classes of graphs. To do this, we prove some results which might be of interest as such. In particular, we show that $D^{\prime}(G) \leq 2$ if G is traceable, and $D^{\prime}(G) \leq 3$ if G is either claw-free or 3 -connected and planar. We also characterize all connected graphs G with $D^{\prime}(G) \geq \Delta(G)$.

Keywords: edge colourings; symmetry breaking in graphs; distinguishing index; claw-free graphs, planar graph Mathematics Subject Classifications: 05C25, 05C15

1 Introduction

We follow standard terminology and notation of graph theory (see, e.g, [8]). In this paper, we consider general, i.e., not necessarily proper, edge colourings

[^0]of graphs. Such a colouring c of a graph G breaks an automorphism $\varphi \in$ $\operatorname{Aut}(G)$ if φ does not preserve colours of c. The distinguishing index $D^{\prime}(G)$ of a graph G is the least number d such that G admits an edge colouring with d colours that breaks all non-trivial automorphisms (such a colouring is called a distinguishing d-colouring). Clearly, $D^{\prime}\left(K_{2}\right)$ is not defined, so in this paper, a graph G is called admissible if neither G nor \bar{G} contains K_{2} as a connected component.

The definition of $D^{\prime}(G)$, introduced by Kalinowski and Pilśniak in [12], was inspired by the well-known distinguishing number $D(G)$ which was defined for general vertex colorings by Albertson and Collins [1]. Another concept is the distinguishing chromatic number $\chi_{D}(G)$ introduced by Collins and Trenk [4] for proper vertex colourings. Both numbers, $D(G)$ and $\chi_{D}(G)$, have been intensively investigated by many authors in recent years.

In 1956, Nordhaus and Gaddum obtained the following lower and upper bounds for the sum of the chromatic numbers of a graph and its complement (actually, the upper bound was first proved by Zykov [18] in 1949).

Theorem 1 [13] If G is a graph of order n with a chromatic number $\chi(G)$, then

$$
2 \sqrt{n} \leq \chi(G)+\chi(\bar{G}) \leq n+1
$$

Since then, Nordhaus-Gaddum type bounds were obtained for many graph invariants. An exhaustive survey is given in [2]. Here, we adduce only those closely related to the topic of our paper.

In 1964, Vizing [15] considered proper edge colourings and he proved Nordhaus-Gaddum type bounds for the chromatic index of a graph.

Theorem 2 [15] If G is a graph of order n with a chromatic index $\chi^{\prime}(G)$, then

$$
n-1 \leq \chi^{\prime}(G)+\chi^{\prime}(\bar{G}) \leq 2(n-1)
$$

In 2013, Collins and Trenk [5] proved Nordhaus-Gaddum type inequalities for the distinguishing chromatic number.

Theorem 3 [5] For every graph of order n and distinguishing number $D(G)$ the following inequalities are satisfied

$$
2 \sqrt{n} \leq \chi_{D}(G)+\chi_{D}(\bar{G}) \leq n+D(G)
$$

Kalinowski and Pilśniak [12] also introduced a distinguishing chromatic index $\chi_{D}^{\prime}(G)$ of a graph G as the least number of colours in a proper edge colouring that breaks all non-trivial automorphisms of G. They proved the following somewhat unexpected result.

Theorem 4 [12] If G is a connected graph of order $n \geq 3$, then

$$
\chi_{D}^{\prime}(G) \leq \Delta(G)+1
$$

except for four graphs of small orders $C_{4}, K_{4}, C_{6}, K_{3,3}$.
Clearly, $\chi_{D}^{\prime}(G) \geq \chi^{\prime}(G)$. Therefore, the following Nordhaus-Gaddum type inequalities for the distinguishing chromatic index can be easily derived from Theorem 2 and Theorem 4.

Theorem 5 If G is an admissible graph of order $n \geq 7$, then

$$
n-1 \leq \chi_{D}^{\prime}(G)+\chi_{D}^{\prime}(\bar{G}) \leq 2(n-1) .
$$

Collins and Trenk observed in [5] that the Nordhaus-Gaddum type relation is trivial for the distinguishing number, as $D(G)+D(\bar{G})=2 D(G)$ since $\operatorname{Aut}(\bar{G})=\operatorname{Aut}(G)$ and every colouring of $V(G)$ breaking all non-trivial automorphisms of G also breaks those of \bar{G}.

The main aim of this paper is to investigate Nordhaus-Gaddum type inequalities for the distinguishing index of a graph. We formulate and discuss the following conjecture.

Conjecture 6 Let G be an admissible graph of order $n \geq 7$, and let $\Delta=$ $\max \{\Delta(G), \Delta(\bar{G})\}$. Then

$$
2 \leq D^{\prime}(G)+D^{\prime}(\bar{G}) \leq \Delta+2 .
$$

2 Preliminary results

In the sequel, we make use of some facts proved in [12].
Proposition 7 [12] $D^{\prime}\left(P_{n}\right)=2$ for every $n \geq 3$.

Proposition 8 [12] $D^{\prime}\left(C_{n}\right)=3$ for $n \leq 5$, and $D^{\prime}\left(C_{n}\right)=2$ for $n \geq 6$.
Proposition 9 [12] $D^{\prime}\left(K_{n}\right)=3$ if $3 \leq n \leq 5$, and $D^{\prime}\left(K_{n}\right)=2$ if $n \geq 6$.
Recall that every finite tree T has either a central vertex or a central edge, which is fixed by every automorphism of T. A symmetric tree, denoted by $T_{h, d}$, is a tree with a central vertex v_{0}, all leaves at the same distance h from v_{0} and all vertices that are not leaves of equal degree d. A bisymmetric tree, denoted by $T_{h, d}^{\prime \prime}$, is a tree with a central edge e_{0}, all leaves at the same distance h from the edge e_{0} and all vertices which are not leaves of equal degree d.

Theorem 10 [12] If T is a tree of order $n \geq 3$, then $D^{\prime}(T) \leq \Delta(T)$. Moreover, equality is achieved if and only if T is either a symmetric or a bisymmetric tree.

For connected graphs in general there is the following upper bound for $D^{\prime}(G)$.
Theorem 11 [12] If G is a connected graph of order $n \geq 3$, then

$$
D^{\prime}(G) \leq \Delta(G)
$$

unless G is C_{3}, C_{4} or C_{5}.
It follows for connected graphs that $D^{\prime}(G) \geq \Delta(G)$ if and only if $D^{\prime}(G)=$ $\Delta(G)+1$ and G is a cycle of length at most 5 . The equality $D^{\prime}(G)=$ $\Delta(G)$ holds for all paths, for cycles of length at least 6 , for $K_{4}, K_{3,3}$ and for symmetric or bisymmetric trees. Now, we show that $D^{\prime}(G)<\Delta(G)$ for all other connected graphs. A palette of a vertex is the set of colours of edges incident to it.

Theorem 12 Let G be a connected graph that is neither a symmetric nor an asymmetric tree. If the maximum degree of G is at least 3 , then $D^{\prime}(G) \leq$ $\Delta(G)-1$ unless G is K_{4} or $K_{3,3}$.

Proof. The conclusion is true for trees due to Theorem 10. We assume that the order of a graph G is at least 7 as the claim for smaller graphs can be easily verified (we skip this to save space).

Denote $\Delta=\Delta(G)$. Consider a maximal subgraph G^{\prime} of G without pendant subtrees and pendant triangles (a subgraph is pendant if it has only one vertex in common with the rest of a graph). First, we construct an edge
colouring c stabilizing all vertices of G^{\prime} by any automorphism preserving c. Next, we can easily colour pendant subtrees and pendant triangles with $\Delta-1$ colours, even if G^{\prime} is empty.

We use a similar notation as in the proof of Theorem 11 in [12]. By $N_{i}(v)$ we denote the set of vertices of distance i from a vertex v. Let x be a vertex with the maximum degree of G. We colour all edges incident to x with 1 . In our edge colouring c of the graph G^{\prime}, the vertex x will be the unique vertex of the maximum degree with the monochromatic palette $\{1\}$. Hence, it will be fixed by every automorphism φ preserving c. The neighbourhood $N_{1}(x)$ can be partitioned into subsets M_{k}, for $k=0,1, \ldots, \Delta-1$, defined as

$$
M_{k}=\left\{v \in N_{1}(x):\left|N_{1}(v) \cap N_{2}(x)\right|=k\right\} .
$$

Denote $M_{k}=\left\{v_{1}, \ldots, v_{l_{k}}\right\}, k=0,1, \ldots, \Delta-1$. Thus, $l_{0}+l_{1}+\ldots+l_{\Delta-1}=\Delta$.
We want to find a colouring of the edges of $G^{\prime}\left[N_{1}(x) \cup N_{2}(x)\right]$ such that each vertex of $N_{1}(x) \cup N_{2}(x)$ is fixed by every automorphism preserving this colouring. We proceed in a number of steps.

Step M_{0}. Observe that, by our choice of G^{\prime}, a subgraph $G^{\prime}\left[M_{0}\right]$ of G^{\prime} induced by the vertices of the set M_{0} contains neither isolated vertices nor isolated edges. Moreover $\Delta\left(G^{\prime}\left[M_{0}\right]\right) \leq \Delta-1$ and we want to colour edges of $G^{\prime}\left[M_{0}\right]$ with $\Delta-1$ colours. This is possible by Theorem 11 unless $G^{\prime}\left[M_{0}\right]$ either is a small cycle of length at most 5 or it is disconnected. If $l_{0}=\Delta$ and $G^{\prime}\left[M_{0}\right] \in\left\{C_{3}, C_{4}, C_{5}\right\}$, then $G \in\left\{K_{4}, K_{5}, K_{6}\right\}$, respectively. A distinguishing colouring is given by Theorem 9 , and it uses Δ colours for K_{4}. If $l_{0}<\Delta$, we can use a third colour for small cycles since then $\Delta \geq 4$.

If $G^{\prime}\left[M_{0}\right]$ is disconnected then $\Delta \geq 6$ and we have to distinguish all isomorphic components. Denote such a component by G_{1}. Suppose that $t G_{1} \subseteq G^{\prime}\left[M_{0}\right]$, for some $t>1$. Recall that $\left|G_{1}\right| \geq 3$, so $t \leq \frac{\Delta}{3}$. We can choose distinct sets of colours for every component since

$$
\binom{\Delta-1}{\frac{\Delta}{t}} \geq\binom{\Delta-1}{3} \geq \frac{\Delta}{3} \geq t
$$

where $\frac{\Delta}{t}-1$ is an upper bound for the maximum degree of G_{1}. Thus, each vertex of M_{0} is fixed.

Step M_{1}. For every $i=1, \ldots, l_{1}$, we colour every edge $v_{i} u$, where $u \in$ $N_{2}(x)$, with a distinct colour from $\{1, \ldots, \Delta-1\}$. This is impossible only if $l_{1}=\Delta$. Then we choose two vertices a and b in $G^{\prime}\left[M_{1}\right]$ such that its
neighbours a^{\prime} and b^{\prime}, respectively, in $N_{2}(x)$ have distinct neighbourhoods in $N_{2}(x)$ or in $N_{3}(x)$. Then we colour with 1 one edge incident with b^{\prime} (but neither $a^{\prime} b^{\prime}$ nor $b b^{\prime}$). It is impossible only if $\left|N_{2}(x)\right|=1$. However, it is easy to find a distinguishing colouring also in this case. Next, we colour all the remaining edges incident to $v_{i} \in M_{1}$ with 1 , and all the remaining edges in $N_{2}(x)$ with 2 . Thus, each vertex of M_{1} is fixed.

Step M_{2}. For every $i=1, \ldots, l_{2}$, we colour the edges $v_{i} u_{1}, v_{i} u_{2}$ where $\left\{u_{1}, u_{2}\right\} \subseteq N_{2}(x)$, with two distinct colour sets from among $\binom{\Delta-1}{2}$ sets. This is impossible only in three cases:
a) if $l_{2}=\Delta=3$. Then we choose two vertices a and b in $G^{\prime}\left[M_{2}\right]$ such that $N(a) \cap N(b) \cap N_{2}(x)=\{y\}$. We colour the edges $a a^{\prime}$ and $c c^{\prime}$ with 1 (also if $c^{\prime}=y$) and the edges $a y, b b^{\prime}, b y, c c^{\prime \prime}$ with 2 . If such a choice of vertices a and b is impossible then either

- $N(a) \cap N(b) \cap N(c) \cap N_{2}(x)=\{y, z\}$, and then G is isomorphic to $K_{3,3} ;$ or
$-N(a) \cap N(b) \cap N_{2}(x)=\{y, z\}$ and $N(a) \cap N(c) \cap N_{2}(x)=\emptyset$, and then we colour an edge by with 1 and edges $a y, a z, b z$ with 2 , and two edges incident with a vertex c with 1 and 2 , or
- for every two vertices a, b of $G^{\prime}\left[M_{2}\right]$, the set $N(a) \cap N(b) \cap N_{2}(x)$ is empty. There exists an i such that $N_{i}(x)$ contains vertices a^{\prime} in the subtree T_{a} and b^{\prime} in the subtree T_{b} such that $a^{\prime} b^{\prime} \in E\left(G^{\prime}\right)$ since G^{\prime} does not have pendant subtrees and triangles. Similarly, there exists a j such that $N_{j}(x)$ contains vertices $a^{\prime \prime}$ in the subtree T_{a} and $c^{\prime \prime}$ in the subtree T_{c} such that $a^{\prime \prime} c^{\prime \prime} \in E\left(G^{\prime}\right)$. Then we colour these two edges $a^{\prime} b^{\prime}, a^{\prime \prime} c^{\prime \prime}$ with 1 , and all remaining edges of $G^{\prime}\left[N_{i}(x)\right]$ and $G^{\prime}\left[N_{j}(x)\right]$ with 2 . Moreover, let a_{1} be a vertex of $G^{\prime}\left[N_{2}(x)\right]$ which is on the path $a-a^{\prime}$, let b_{1} be a vertex of $G^{\prime}\left[N_{2}(x)\right]$ which is on the path $b-b^{\prime}$, and let c_{1} be a vertex of $G^{\prime}\left[N_{2}(x)\right]$ which is on the path $c-c^{\prime \prime}$. If a_{1} is on the path $a-a^{\prime \prime}$, then we colour the edges $a a_{1}$, $b b_{2}$ and $c c_{1}$ with 2 , and the edges $a a_{2}, b b_{1}$ and $c c_{2}$ with 1 . If a_{1} is not on the path $a-a^{\prime \prime}$, then we colour the edges $a a_{2}, b b_{1}$ and $c c_{1}$ with 2 , and the edges $a a_{1}, b b_{2}$ and $c c_{2}$ with 1 .
b) if $l_{2}=\Delta=4$. Then we choose two vertices a and b in $G^{\prime}\left[M_{2}\right]$ such that $N(a) \cap N_{2}(x) \neq N(b) \cap N_{2}(x)$ and $N(a) \cap N(b) \cap N_{2}(x) \neq \emptyset$. We colour with 2 and 3 the edges incident with a and with 2 both edges incident with b. It is impossible only if $G^{\prime}\left[M_{2}\right] \cup N\left(G^{\prime}\left[M_{2}\right]\right) \cap N_{2}(x) \subseteq K_{3,4}$ (then two colours suffice to fix all seven vertices, by Theorem 14, as $K_{3,4}$ is traceable), or if for every a and b in $G^{\prime}\left[M_{2}\right]$, the set $N(a) \cap N(b) \cap N_{2}(x)$ is empty (then two vertices of $G^{\prime}\left[M_{2}\right]$ obtain the same pair of colours and we can distinguish
them in next levels recursively).
c) if $l_{2}=\Delta-1$ and $\Delta=3$. Let a and b be the two vertices in $G^{\prime}\left[M_{2}\right]$. If $N(a) \cap N(b) \cap N_{2}(x) \neq \emptyset$, then we colour with 1 and 2 the two edges incident to a and both edges incident to b with 2 . If the set $N(a) \cap N(b) \cap N_{2}(x)$ is empty, then there exists an i such that $N_{i}(x)$ contains vertices a^{\prime} in the subtree T_{a} and b^{\prime} in the subtree T_{b} such that $a^{\prime} b^{\prime} \in E\left(G^{\prime}\right)$ because G^{\prime} does not have pendant subtrees and triangles. Then we colour the edge $a^{\prime} b^{\prime}$ with 1 and all remaining edges of $G^{\prime}\left[N_{i}(x)\right]$ with 2 . Let a_{1} be a vertex of $G^{\prime}\left[N_{2}(x)\right]$ which is on the path $a-a^{\prime}$, and let b_{1} be a vertex of $G^{\prime}\left[N_{2}(x)\right]$ which is on the path $b-b^{\prime}$. Then we colour the edges $a a_{1}, b b_{2}$ with 1 , and the edges $a a_{2}$, $b b_{1}$ with 2 .

Next, we colour all the remaining edges incident to $v_{i} \in M_{2}$ with 2 and all the remaining edges in $N_{2}(x)$ with 2 . Thus, each vertex of M_{2} is fixed.

Step M_{j}, for $j \geq 3$. For every $i=1, \ldots, l_{j}$, we colour the edges $v_{i} u$, where $u \in N_{2}(x)$, with distinct sets of j colours from $\binom{\Delta-1}{j}$ sets. It is always possible whenever $\binom{\Delta-1}{j} \geq l_{j}$. This inequality does not hold only in two cases.

- If $j=\Delta-2$ and $l_{j}=\Delta$, then we define a colouring with $\Delta-1$ colours like in Step M_{2} b).
- If $j=\Delta-1$ and $l_{j} \geq 2$, then we can use multisets of colours (without a monochromatic set $\{1\}$) for colouring edges incident with $v \in M_{j}$ and we define a colouring with $\Delta-1$ colours like in $\operatorname{Step} M_{2}$ a) and c), but it is more technical and complicated.

Clearly, each vertex of $N_{1}(x) \cup N_{2}(x)$ is fixed by every automorphism preserving the colouring c.

Then for $v_{j} \in N_{j}(x), j \geq 2$, we colour all edges $v_{j} u, u \in N_{j+1}(x)$, with distinct colours from $\{1, \ldots, \Delta-1\}$ and the remaining edges incident to v_{j} with 2.

Then we recursively colour the edges incident to consecutive spheres $N_{j}(x)$ in the same way as previously. It is easily seen that it is always possible. Hence, all vertices of G^{\prime} are fixed by any automorphism φ preserving our colouring c.

It is not difficult to observe that x is the unique vertex of the maximum degree with the monochromatic palette $\{1\}$.

3 Some classes of graphs

We say that a graph G is almost spanned by a subgraph H if $G-v$ is spanned by H for some $v \in V(G)$. The following observation will play a crucial role in this section.

Lemma 13 If a graph G is spanned or almost spanned by a subgraph H, then

$$
D^{\prime}(G) \leq D^{\prime}(H)+1
$$

Proof. We colour the edges of H with colours $1, \ldots, D^{\prime}(H)$, and all other edges of G with an additional colour 0 . If φ is an automorphism of G preserving this colouring, then $\varphi(x)=x$, for each $x \in V(H)$. Moreover, if H is a spanning subgraph of $G-v$, then also $\varphi(v)=v$. Therefore, φ is the identity.

Traceable graphs

Theorem 14 If G is a traceable graph of order $n \geq 7$, then $D^{\prime}(G) \leq 2$.
Proof. Let $P_{n}=v_{1} v_{2} \ldots v_{n}$ be a Hamiltonian path of G. If $G=P_{n}$ then the conclusion follows from Proposition 7. If G is isomorphic to $P_{n}+v_{1} v_{3}$, them we colour the edge $v_{1} v_{3}$ with 1 , and all other edges with 2 breaking all nontrivial automorphisms of G. Then suppose that G contains an edge $v_{i} v_{j}$ distinct from $v_{1} v_{3}$ with $i<j-1$. Without loss of generality we may assume that $i-1 \leq n-j$. It is easy to see that at least one of the graphs $P_{n}+v_{i} v_{j}-v_{j-1} v_{j}, P_{n}+v_{i} v_{j}-v_{j-1}$ or $P_{n}+v_{i} v_{j}-v_{n}$ is an asymmetric spanning or almost spanning subgraph of G for any $n \geq 7$. The conclusion follows from Lemma 13.

The assumption $n \geq 7$ is substantial in the above theorem since $D^{\prime}\left(K_{3,3}\right)=3$.

Claw-free graphs

A $K_{1,3}$-free graph, called also a claw-free graph, is a graph containing no copy of $K_{1,3}$ as an induced subgraph. Claw-free graphs have numerous applications, e.g., in operations research and scheduling theory. For a survey of claw-free graphs and their applications consult [6].

A k-tree of a connected graph is its spanning tree with the maximum degree k. Win [17] investigated spanning trees in 1-tough graphs and proved the following result.

Theorem 15 [17] A 2-connected claw-free graph has a 3-tree.
We use this result to give an upper bound for the distinguishing number of claw-free graphs.

Theorem 16 If G is a connected claw-free graph, then $D^{\prime}(G) \leq 3$.
Proof. Assume first that G is 2 -connected. Let T be a 3 -tree of G. By Theorem 10 and Theorem 15 , we have $D^{\prime}(T) \leq 2$ if T is neither symmetric nor bisymmetric tree. Hence, $D^{\prime}(G) \leq 3$ by Lemma13.

Let T be a symmetric tree $T_{h, 3}$. Denote a central vertex of T by x and its neighbour by a, b, c. Since G is a claw-free graph, there exists in G at least one edge, say $b c$, in the neighbourhood of x in T. Define a subgraph $\widetilde{T}=T+a b$. We colour $b c, x a$ and $x b$ with 1 , and $x c$ with 2 . Thus all vertices a, b, c, x are fixed by every nontrivial automorphisms of \widetilde{T}. We now colour the remaining edges in \widetilde{T} starting from the edges incident to a, b, c in such way that two uncoloured adjacent edges obtain two different colours 1 and 2. This colouring breaks all non-trivial automorphisms of \widetilde{T}. Hence, $D^{\prime}(G) \leq 3$ by Lemma 13 .

Let T be a bisymmetric tree $T_{h, 3}^{\prime \prime}$. Denote a central edge by $x y$ and its neighbours by a, b, c, d. We colour $x y, x a$ and $y c$ with 1 , and $x b$ and $y d$ with 2. Since G is a claw-free graph, there exist in G either at least one of edges $b y, c x$ or both $a b$ and $c d$. We define a subgraph \widetilde{T} obtained from the tree T by adding either one of the edges $b y, c x$ or both $a b$ and $c d$. In the first case we colour $b y$ or $c x$ with 1 , in the second case we colour $a b$ with 1 and $c d$ with 2. Now all vertices a, b, c, d, x, y are fixed by every nontrivial automorphism of \widetilde{T}. We then colour the remaining edges of \widetilde{T} as above, and we obtain the claim.

If a graph G is not 2-connected, then its graph of blocks and cut-vertices is a path, since G is claw-free. We colour every block according to the rules described above. Then to break all non-trivial automorphisms of G, it is enough to ensure that two terminal blocks has no isomorphic colourings. This is possible by exchanging 1 and 2 in a colouring of edges in a neighbourhood of a centrum of a spanning tree of G.

Planar graphs

First, recall that by a famous Theorem of Tutte [14], every 4-connected planar graph is hamiltonian. Hence its distinguishing index is at most 2, by Theorem 14. A similar result as for claw-free graphs we obtain for 3connected planar graphs. In the proof, we use the following result of Barnette about spanning trees of such graphs.

Theorem 17 [3] Every 3-connected planar graph has a 3-tree.
Using a similar method as in the proof of Theorem 16, we obtain the following.

Theorem 18 If G is 3 -connected planar graph, then $D^{\prime}(G) \leq 3$.
Proof. Let T be a 3 -tree of G. It follows from Theorem 10 that $D^{\prime}(T) \leq 2$ and hence, $D^{\prime}(G) \leq 3$ by Lemma 13 , if T is neither a symmetric nor a bisymmetric tree.

Let then T be a symmetric tree $T_{h, 3}$. Denote a central vertex by x, and by T_{a}, T_{b} and T_{c} the connected components of $T-x$ which are trees rooted at the neighbours a, b, c of a vertex x, respectively. Since G is 3 -connected, there exist an edge e between T_{a} and T_{b} in G. Consider a spanning subgraph $\widetilde{T}=T+e$. Then we colour $x a$ and $x c$ with 1 , and $x b$ with 2 , and extend this colouring as in the proof of Theorem 16 to a colouring of \widetilde{T} breaking by all non-trivial automorphisms of \widetilde{T} (the colour of e is irrelevant). Consequently, $D^{\prime}(G) \leq 3$ by Lemma 13 .

If T is a bisymmetric tree $T_{h, 3}^{\prime \prime}$ with and a central edge $x y$, then we can add to T one edge in a subtree of $T-x y$ rooted at x, and such a graph can be easily distinguished by two colours. Again, our claim follows from Lemma 13.

2-connected graphs

For a 2-connected planar graph G, the distinguishing index may attain $1+\lceil\sqrt{\Delta(G)}\rceil$ as it is shown by the complete bipartite graph $K_{2, q}$ with $q=r^{2}$ for a positive integer r. In this case, $D^{\prime}\left(K_{2, q}\right)=r+1$ as it follows from the result obtained independently by Fisher and Isaak [7] and by Imrich, Jerebic and Klavžar [11]. They proved exactly the following theorem.

Theorem 19 [7], [11] Let p, q, d be integers such that $d \geq 2$ and $(d-1)^{p}<$ $q \leq d^{p}$. Then

$$
D^{\prime}\left(K_{p, q}\right)=\left\{\begin{array}{cc}
d, & \text { if } q \leq d^{p}-\left\lceil\log _{d} p\right\rceil-1, \\
d+1, & \text { if } q \geq d^{p}-\left\lceil\log _{d} p\right\rceil+1 .
\end{array}\right.
$$

If $q=d^{p}-\left\lceil\log _{d} p\right\rceil$ then the distinguishing indexD $D^{\prime}\left(K_{p, q}\right)$ is either d or $d+1$ and can be computed recursively in $O\left(\log ^{*}(q)\right)$ time.

In the next section, we make use of the following immediate corollary.
Corollary 20 If $p \leq q$, then $D^{\prime}\left(K_{p, q}\right) \leq\lceil\sqrt[p]{q}\rceil+1$.

Moreover, we prove a useful property of distinguishing 2-colourings of complete bipartite graphs.

Proposition 21 If $D^{\prime}\left(K_{p, q}\right) \leq 2$, then there exists a distinguishing edge 2colouring such that the edges in one of colours induce a spanning or an almost spanning asymmetric subgraph of $K_{p, q}$.

Proof. Let P and Q be the two sets of bipartition of $K_{p, q}$, and assume $p \leq q$. If $p=q$, then there exists a spanning asymmetric tree of $K_{p, p}$ (see [12]).

If $p<q$, then to prove the claim it suffices to show the existence of a distinguishing colouring with red and blue, such that at most one vertex in $K_{p, q}$ has no red incident edge. Suppose then that there exist two vertices v and w in P (or both in Q) without any red incident edge. Then a transposition of v and w is a non-trivial automorphism preserving the colouring, a contradiction. Now, let v be a vertex in P without any red incident edge. It is not difficult to observe that even if every vertex in P has a distinct number of incident red edges, then we have $q-p+1$ free numbers of possible red
incident edges. We choose a number i and we colour red i edges between v and edges in Q with largest number of red incident edges. It is not difficult to observe that such a colouring is preserved only by the identity. So we have a spanning or almost spanning red subgraph of $K_{p, q}$.

Corollary 22 If a graph G is spanned by $K_{p, q}$ and $D^{\prime}\left(K_{p, q}\right) \leq 2$, then $D^{\prime}(G) \leq 2$.

In general, for 2-connected graphs we conjecture that the complete bipartite graph $K_{2, r^{2}}$ is the worst case.

Conjecture 23 If G is a 2-connected graph, then

$$
D^{\prime}(G) \leq 1+\lceil\sqrt{\Delta(G)}\rceil \text {. }
$$

4 Nordhaus-Gaddum inequalities for D^{\prime}

In this section, we discuss Conjecture 6, formulated at the end of Introduction, stating that

$$
2 \leq D^{\prime}(G)+D^{\prime}(\bar{G}) \leq \Delta+2
$$

for every admissible graph G of order $n \geq 7$, where $\Delta=\max \{\Delta(G), \Delta(\bar{G})\}$.
The left-hand inequality is obvious. Indeed, if a graph G is asymmetric, then so is \bar{G}. Thus we are only interested in the right-hand inequality $D^{\prime}(G)+$ $D^{\prime}(\bar{G}) \leq \Delta+2$. Note also that at least one of the graphs G and \bar{G} is connected.

The bound $\Delta+2$ cannot be improved. To see this, consider a star $K_{1, n-1}$ of any order $n \geq 7$. As $\overline{K_{1, n-1}}$ is a disjoint union of a complete graph K_{n-1} and an isolated vertex, it follows from Proposition 9 that $D^{\prime}\left(\overline{K_{1, n-1}}\right)=2$. Therefore, $D^{\prime}\left(K_{1, n-1}\right)+D^{\prime}\left(\overline{K_{1, n-1}}\right)=n-1+2=\Delta+2$.

If T is a tree, then $\Delta(T)$ can be much smaller than $\Delta=\Delta(\bar{T})=n-1$. However, the following holds.

Proposition 24 If T is a tree of order $n \geq 7$, then

$$
D^{\prime}(T)+D^{\prime}(\bar{T}) \leq \Delta(T)+2 .
$$

Proof. As it was shown above, the conclusion holds for stars. If T is not a star, then $D^{\prime}(\bar{T}) \leq 2$ by Lemma 13. Indeed, as it was proved by Hedetniemi et al. in [9], every two trees distinct from a star can be packed into K_{n}. Thus, the complement \bar{T} contains a spanning asymmetric tree. By Theorem 10 , we have the inequality $D^{\prime}(T)+D^{\prime}(\bar{T}) \leq \Delta(T)+2$.

This fact emboldened us to formulate the following stronger conjecture.
Conjecture 25 Every connected admissible graph G of order $n \geq 7$ satisfies the inequality

$$
D^{\prime}(G)+D^{\prime}(\bar{G}) \leq \Delta(G)+2
$$

Now we show that Conjecture 6 holds not only for trees, but also for some other classes of graphs. To do this we use the following fact.

Theorem 26 Let G be a connected admissible graph of order $n \geq 7$. If either G or \bar{G} has the distinguishing index at most 3, then

$$
D^{\prime}(G)+D^{\prime}(\bar{G}) \leq \Delta+2,
$$

where $\Delta=\max \{\Delta(G), \Delta(\bar{G})\}$.

Proof.

Case A. Let $D^{\prime}(\bar{G}) \leq 3$.
Then $D^{\prime}(G) \leq \Delta(G)-1$, and if \bar{G} is connected, then our claim holds. Assume now that \bar{G} is disconnected. Then G is spanned by $K_{p, q}$ with $p \leq q$ and $\Delta=q$. Suppose that a graph \bar{G} has t isomorphic components. If we had a distinct set of three colours for every component, then $D^{\prime}(\bar{G}) \leq\lceil\sqrt[3]{6 t}\rceil$. We then consider two cases:

- If $q \leq 2^{p}-\left\lceil\log _{2} p\right\rceil-1$, then $D^{\prime}(G)=2$ by Theorem 19 and Theorem 22 . Moreover, we then have at most $\frac{n}{3}$ connected components of \bar{G}, so $D^{\prime}(\bar{G}) \leq\lceil\sqrt[3]{2 n}\rceil$. And we can easily check that

$$
\lceil\sqrt[3]{2 n}\rceil+2 \leq \frac{n}{2}+2
$$

for every $n \geq 4$.

- If $q \geq 2^{p}-\left\lceil\log _{2} p\right\rceil-1$, then there exists a big connected component (of order q) in \bar{G} and we can assume that $t \leq \frac{p}{3}$ remaining components are isomorphic $(p \geq 6)$. In this case, by assumptions we have $p \leq$ $\left\lceil\log _{2}(q+1)\right\rceil$, therefore

$$
D^{\prime}(\bar{G}) \leq\lceil\sqrt[3]{6 t}\rceil \leq \sqrt[3]{2\left\lceil\log _{2}(q+1)\right\rceil} .
$$

On the other hand we have $D^{\prime}(G) \leq\lceil\sqrt[p]{q}\rceil+2$ by Theorem 20 and Theorem 13. Then it is not difficult to check that

$$
\sqrt[3]{2\left\lceil\log _{2}(q+1)\right\rceil}+\lceil\sqrt[p]{q}\rceil+2 \leq q+2
$$

what finishes the proof.
Case B. Let $D^{\prime}(G) \leq 3$.
If \bar{G} is connected, then we obtain our claim by Theorem 12. Assume now, that \bar{G} has $t \geq 2$ connected components. Then $\Delta \geq \frac{n}{2}$ and, in the worst case, all connected components of \bar{G} are isomorphic. Observe that the maximal degree of every component is at most $\frac{n}{t}-1$. If we assign one unique colour to every component, then we need at most $\frac{n}{t}-1+(t-1)$ colours to distinguish \bar{G}. Hence, if

$$
\frac{n}{t}+t \leq \frac{n}{2}-1,
$$

then $D^{\prime}(\bar{G}) \leq \Delta-1$, and our claim is true. The above inequality holds unless $t=2$.

If there exist two isomorphic connected components in \bar{G}, then $D^{\prime}(G) \leq 2$
 $D^{\prime}(G)+D^{\prime}(\bar{G}) \leq \frac{n}{2}+2$.

We now can formulate some consequences of Theorem 26 and suitable results proved in Section 3.

Corollary 27 Let G be a connected admissible graph of order $n \geq 7$. If G satisfies at least one of the following conditions:

- traceable graphs,
- claw-free graphs,
- triangle-free graphs,
- 3-connected planar graphs,
then

$$
D^{\prime}(G)+D^{\prime}(\bar{G}) \leq \Delta+2,
$$

where $\Delta=\max \{\Delta(G), \Delta(\bar{G})\}$.
Proof. It suffices to apply Theorem 26 together with Theorem 14, Theorem 16 and Theorem 18, respectively. Observe also that if the girth of a graph G is at least 4, i.e., G is triangle-free, then its complement \bar{G} is clawfree.

Finally, it has to be noted that there exist graphs of order less than 7 such that the right-hand inequality in Conjecture 6 is not satisfied. For example, for the graph $K_{3,3}$ we have $D^{\prime}\left(K_{3,3}\right)=D^{\prime}\left(\overline{K_{3,3}}\right)=3$ and $\Delta=3$, hence $D^{\prime}\left(K_{3,3}\right)+D^{\prime}\left(\overline{K_{3,3}}\right)=\Delta+4$. Also, $D^{\prime}\left(C_{5}\right)+D^{\prime}\left(\overline{C_{5}}\right)=3+3=\Delta+4$, and $D^{\prime}\left(K_{1, i}\right)+D^{\prime}\left(\overline{K_{1, i}}\right)=\Delta+3$ for $i=3,4,5$.

References

[1] M. O. Albertson and K. L. Collins, Symmetry breaking in graphs, Electron. J. Combin. 3 (1996), R18.
[2] M. Aouchiche and P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Appl. Math. 161 (2013), 466-546.
[3] D. W. Barnette, Trees in polihedral graphs, Can. J. Math. 18 (1966), 731-736.
[4] K. L. Collins and A. N. Trenk, The distinguishing chromatic number, Electron. J. Combin. 13 (2006,) R16.
[5] K. L. Collins and A. N. Trenk, Nordhaus-Gaddum Theorem for the Distinguishing Chromatic Number, Electron. J. Combin. 20 (2013), P46.
[6] R. Faudree, E. Flandrin and Z. Ryjaček, Claw-free graphs - A survey, Discrete Math. 164 (1997), 87-147.
[7] M. J. Fisher and G. Isaak, Distinguishing colorings of Cartesian products of complete graphs, Discrete Math. 308 (2008), 2240-2246.
[8] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs (Second Edition), Taylor \& Francis Group (2011).
[9] S. M. Hedetniemi, S. T. Hedetniemi and P. J. Slater, A note on packing two trees into K_{n}, Ars Combin. 11 (1981), 149-153.
[10] W. Imrich, R. Kalinowski, F. Lehner and M. Pilśniak, Endomorphism Breaking in Graphs, Electron. J. Combin. 21 (2014), P1.16.
[11] W. Imrich, J. Jerebic and S. Klavžar, The distinguishing number of Cartesian products of complete graphs, European J. Combin. 29 (2008), 922-929.
[12] R. Kalinowski and M. Pilśniak, Distinguishing graphs by edge colourings, European J. Combin. 45 (2015), 124-131.
[13] E. A. Nordhaus and J. W. Gaddum, On Complementary Graphs, Amer. Math. Monthly 63 (1956), 175-177.
[14] W. T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956), 99-116.
[15] V. G. Vizing, The chromatic class of multigraphs, Kibernetika 1 (1965), 29-39.
[16] H. Whitney, Non-separable and planar graphs, Trans. Amer. Math. Soc. 34 (1932), 339-362,
[17] S. Win, On a Connection Between the Existence of k-Trees and Toughness of Graphs, Graphs and Combin. 5 (1989), 201-205,
[18] A. A. Zykov, On Some Properties of Linear Complexes, Math. Sbornik. NS, 24 (1949), 163-188.

[^0]: *The research was partially supported by the Polish Ministry of Science and Higher Education.

