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Abstract

The distinguishing index of a graph G, denoted by D′(G), is the
least number of colours in an edge colouring of G not preserved by
any non-trivial automorphism. We investigate the Nordhaus-Gaddum
type relation:

2 ≤ D′(G) +D′(G) ≤ max{∆(G),∆(G)}+ 2

and prove that it holds for some classes of graphs. To do this, we
prove some results which might be of interest as such. In particular,
we show that D′(G) ≤ 2 if G is traceable, and D′(G) ≤ 3 if G is
either claw-free or 3-connected and planar. We also characterize all
connected graphs G with D′(G) ≥ ∆(G).

Keywords: edge colourings; symmetry breaking in graphs; distin-
guishing index; claw-free graphs, planar graph
Mathematics Subject Classifications: 05C25, 05C15

1 Introduction

We follow standard terminology and notation of graph theory (see, e.g, [8]).
In this paper, we consider general, i.e., not necessarily proper, edge colourings

∗The research was partially supported by the Polish Ministry of Science and Higher
Education.
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of graphs. Such a colouring c of a graph G breaks an automorphism ϕ ∈
Aut(G) if ϕ does not preserve colours of c. The distinguishing index D′(G)
of a graph G is the least number d such that G admits an edge colouring
with d colours that breaks all non-trivial automorphisms (such a colouring
is called a distinguishing d-colouring). Clearly, D′(K2) is not defined, so in
this paper, a graph G is called admissible if neither G nor G contains K2 as
a connected component.

The definition of D′(G), introduced by Kalinowski and Piĺsniak in [12],
was inspired by the well-known distinguishing number D(G) which was de-
fined for general vertex colorings by Albertson and Collins [1]. Another
concept is the distinguishing chromatic number χD(G) introduced by Collins
and Trenk [4] for proper vertex colourings. Both numbers, D(G) and χD(G),
have been intensively investigated by many authors in recent years.

In 1956, Nordhaus and Gaddum obtained the following lower and upper
bounds for the sum of the chromatic numbers of a graph and its complement
(actually, the upper bound was first proved by Zykov [18] in 1949).

Theorem 1 [13] If G is a graph of order n with a chromatic number χ(G),
then

2
√
n ≤ χ(G) + χ(G) ≤ n + 1.

Since then, Nordhaus-Gaddum type bounds were obtained for many graph
invariants. An exhaustive survey is given in [2]. Here, we adduce only those
closely related to the topic of our paper.

In 1964, Vizing [15] considered proper edge colourings and he proved
Nordhaus-Gaddum type bounds for the chromatic index of a graph.

Theorem 2 [15] If G is a graph of order n with a chromatic index χ′(G),
then

n− 1 ≤ χ′(G) + χ′(G) ≤ 2(n− 1).

In 2013, Collins and Trenk [5] proved Nordhaus-Gaddum type inequalities
for the distinguishing chromatic number.

Theorem 3 [5] For every graph of order n and distinguishing number D(G)
the following inequalities are satisfied

2
√
n ≤ χD(G) + χD(G) ≤ n+D(G).
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Kalinowski and Piĺsniak [12] also introduced a distinguishing chromatic
index χ′

D(G) of a graph G as the least number of colours in a proper edge
colouring that breaks all non-trivial automorphisms of G. They proved the
following somewhat unexpected result.

Theorem 4 [12] If G is a connected graph of order n ≥ 3, then

χ′
D(G) ≤ ∆(G) + 1

except for four graphs of small orders C4, K4, C6, K3,3.

Clearly, χ′
D(G) ≥ χ′(G). Therefore, the following Nordhaus-Gaddum type

inequalities for the distinguishing chromatic index can be easily derived from
Theorem 2 and Theorem 4.

Theorem 5 If G is an admissible graph of order n ≥ 7, then

n− 1 ≤ χ′
D(G) + χ′

D(G) ≤ 2(n− 1).

�

Collins and Trenk observed in [5] that the Nordhaus-Gaddum type relation
is trivial for the distinguishing number, as D(G) + D(G) = 2D(G) since
Aut(G) = Aut(G) and every colouring of V (G) breaking all non-trivial au-
tomorphisms of G also breaks those of G.

The main aim of this paper is to investigate Nordhaus-Gaddum type
inequalities for the distinguishing index of a graph. We formulate and discuss
the following conjecture.

Conjecture 6 Let G be an admissible graph of order n ≥ 7, and let ∆ =
max{∆(G),∆(G)}. Then

2 ≤ D′(G) +D′(G) ≤ ∆+ 2.

2 Preliminary results

In the sequel, we make use of some facts proved in [12].

Proposition 7 [12] D′(Pn) = 2 for every n ≥ 3.
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Proposition 8 [12] D′(Cn) = 3 for n ≤ 5, and D′(Cn) = 2 for n ≥ 6.

Proposition 9 [12] D′(Kn) = 3 if 3 ≤ n ≤ 5, and D′(Kn) = 2 if n ≥ 6.

Recall that every finite tree T has either a central vertex or a central
edge, which is fixed by every automorphism of T . A symmetric tree, denoted
by Th,d, is a tree with a central vertex v0, all leaves at the same distance h
from v0 and all vertices that are not leaves of equal degree d. A bisymmetric
tree, denoted by T ′′

h,d, is a tree with a central edge e0, all leaves at the same
distance h from the edge e0 and all vertices which are not leaves of equal
degree d.

Theorem 10 [12] If T is a tree of order n ≥ 3, then D′(T ) ≤ ∆(T ). More-
over, equality is achieved if and only if T is either a symmetric or a bisym-
metric tree.

For connected graphs in general there is the following upper bound forD′(G).

Theorem 11 [12] If G is a connected graph of order n ≥ 3, then

D′(G) ≤ ∆(G)

unless G is C3, C4 or C5.

It follows for connected graphs that D′(G) ≥ ∆(G) if and only if D′(G) =
∆(G) + 1 and G is a cycle of length at most 5. The equality D′(G) =
∆(G) holds for all paths, for cycles of length at least 6, for K4, K3,3 and for
symmetric or bisymmetric trees. Now, we show that D′(G) < ∆(G) for all
other connected graphs. A palette of a vertex is the set of colours of edges
incident to it.

Theorem 12 Let G be a connected graph that is neither a symmetric nor
an asymmetric tree. If the maximum degree of G is at least 3, then D′(G) ≤
∆(G)− 1 unless G is K4 or K3,3.

Proof. The conclusion is true for trees due to Theorem 10. We assume that
the order of a graph G is at least 7 as the claim for smaller graphs can be
easily verified (we skip this to save space).

Denote ∆ = ∆(G). Consider a maximal subgraph G′ of G without pen-
dant subtrees and pendant triangles (a subgraph is pendant if it has only
one vertex in common with the rest of a graph). First, we construct an edge
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colouring c stabilizing all vertices of G′ by any automorphism preserving c.
Next, we can easily colour pendant subtrees and pendant triangles with ∆−1
colours, even if G′ is empty.

We use a similar notation as in the proof of Theorem 11 in [12]. By Ni(v)
we denote the set of vertices of distance i from a vertex v. Let x be a vertex
with the maximum degree of G. We colour all edges incident to x with 1. In
our edge colouring c of the graph G′, the vertex x will be the unique vertex
of the maximum degree with the monochromatic palette {1}. Hence, it will
be fixed by every automorphism ϕ preserving c. The neighbourhood N1(x)
can be partitioned into subsets Mk, for k = 0, 1, . . . ,∆− 1, defined as

Mk = {v ∈ N1(x) : |N1(v) ∩N2(x)| = k}.

Denote Mk = {v1, . . . , vlk}, k = 0, 1, . . . ,∆−1. Thus, l0+ l1+ . . .+ l∆−1 = ∆.

We want to find a colouring of the edges of G′[N1(x) ∪ N2(x)] such that
each vertex of N1(x)∪N2(x) is fixed by every automorphism preserving this
colouring. We proceed in a number of steps.

Step M0. Observe that, by our choice of G′, a subgraph G′[M0] of G
′

induced by the vertices of the set M0 contains neither isolated vertices nor
isolated edges. Moreover ∆(G′[M0]) ≤ ∆ − 1 and we want to colour edges
of G′[M0] with ∆− 1 colours. This is possible by Theorem 11 unless G′[M0]
either is a small cycle of length at most 5 or it is disconnected. If l0 = ∆ and
G′[M0] ∈ {C3, C4, C5}, thenG ∈ {K4, K5, K6}, respectively. A distinguishing
colouring is given by Theorem 9, and it uses ∆ colours for K4. If l0 < ∆, we
can use a third colour for small cycles since then ∆ ≥ 4.

If G′[M0] is disconnected then ∆ ≥ 6 and we have to distinguish all
isomorphic components. Denote such a component by G1. Suppose that
tG1 ⊆ G′[M0], for some t > 1. Recall that |G1| ≥ 3, so t ≤ ∆

3
. We can

choose distinct sets of colours for every component since
(
∆− 1

∆
t

)
≥

(
∆− 1

3

)
≥ ∆

3
≥ t,

where ∆
t
− 1 is an upper bound for the maximum degree of G1. Thus, each

vertex of M0 is fixed.
Step M1. For every i = 1, . . . , l1, we colour every edge viu, where u ∈

N2(x), with a distinct colour from {1, . . . ,∆ − 1}. This is impossible only
if l1 = ∆. Then we choose two vertices a and b in G′[M1] such that its
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neighbours a′ and b′, respectively, in N2(x) have distinct neighbourhoods in
N2(x) or in N3(x). Then we colour with 1 one edge incident with b′ (but
neither a′b′ nor bb′). It is impossible only if |N2(x)| = 1. However, it is easy
to find a distinguishing colouring also in this case. Next, we colour all the
remaining edges incident to vi ∈ M1 with 1, and all the remaining edges in
N2(x) with 2. Thus, each vertex of M1 is fixed.

Step M2. For every i = 1, . . . , l2, we colour the edges viu1, viu2 where
{u1, u2} ⊆ N2(x), with two distinct colour sets from among

(
∆−1
2

)
sets. This

is impossible only in three cases:
a) if l2 = ∆ = 3. Then we choose two vertices a and b in G′[M2] such that

N(a) ∩ N(b) ∩N2(x) = {y}. We colour the edges aa′ and cc′ with 1 (also if
c′ = y) and the edges ay, bb′, by, cc” with 2. If such a choice of vertices a
and b is impossible then either

– N(a)∩N(b)∩N(c)∩N2(x) = {y, z}, and then G is isomorphic to K3,3;
or

– N(a) ∩N(b) ∩N2(x) = {y, z} and N(a) ∩N(c) ∩N2(x) = ∅, and then
we colour an edge by with 1 and edges ay, az, bz with 2 , and two edges
incident with a vertex c with 1 and 2, or

– for every two vertices a, b of G′[M2], the set N(a) ∩ N(b) ∩ N2(x) is
empty. There exists an i such that Ni(x) contains vertices a

′ in the subtree
Ta and b′ in the subtree Tb such that a′b′ ∈ E(G′) since G′ does not have
pendant subtrees and triangles. Similarly, there exists a j such that Nj(x)
contains vertices a′′ in the subtree Ta and c′′ in the subtree Tc such that
a′′c′′ ∈ E(G′). Then we colour these two edges a′b′, a′′c′′ with 1, and all
remaining edges of G′[Ni(x)] and G′[Nj(x)] with 2. Moreover, let a1 be a
vertex of G′[N2(x)] which is on the path a−a′, let b1 be a vertex of G′[N2(x)]
which is on the path b − b′, and let c1 be a vertex of G′[N2(x)] which is on
the path c − c′′. If a1 is on the path a − a′′, then we colour the edges aa1,
bb2 and cc1 with 2, and the edges aa2, bb1 and cc2 with 1. If a1 is not on the
path a− a′′, then we colour the edges aa2, bb1 and cc1 with 2, and the edges
aa1, bb2 and cc2 with 1.

b) if l2 = ∆ = 4. Then we choose two vertices a and b in G′[M2] such
that N(a)∩N2(x) 6= N(b)∩N2(x) and N(a)∩N(b)∩N2(x) 6= ∅. We colour
with 2 and 3 the edges incident with a and with 2 both edges incident with b.
It is impossible only if G′[M2]∪N(G′[M2])∩N2(x) ⊆ K3,4 (then two colours
suffice to fix all seven vertices, by Theorem 14, as K3,4 is traceable), or if for
every a and b in G′[M2], the set N(a) ∩ N(b) ∩ N2(x) is empty (then two
vertices of G′[M2] obtain the same pair of colours and we can distinguish
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them in next levels recursively).
c) if l2 = ∆− 1 and ∆ = 3. Let a and b be the two vertices in G′[M2]. If

N(a)∩N(b)∩N2(x) 6= ∅, then we colour with 1 and 2 the two edges incident
to a and both edges incident to b with 2. If the set N(a) ∩ N(b) ∩ N2(x)
is empty, then there exists an i such that Ni(x) contains vertices a′ in the
subtree Ta and b′ in the subtree Tb such that a′b′ ∈ E(G′) because G′ does
not have pendant subtrees and triangles. Then we colour the edge a′b′ with 1
and all remaining edges of G′[Ni(x)] with 2. Let a1 be a vertex of G′[N2(x)]
which is on the path a − a′, and let b1 be a vertex of G′[N2(x)] which is on
the path b− b′. Then we colour the edges aa1, bb2 with 1, and the edges aa2,
bb1 with 2.

Next, we colour all the remaining edges incident to vi ∈ M2 with 2 and
all the remaining edges in N2(x) with 2. Thus, each vertex of M2 is fixed.

Step Mj, for j ≥ 3. For every i = 1, . . . , lj , we colour the edges viu,
where u ∈ N2(x), with distinct sets of j colours from

(
∆−1
j

)
sets. It is always

possible whenever
(
∆−1
j

)
≥ lj . This inequality does not hold only in two

cases.
- If j = ∆− 2 and lj = ∆, then we define a colouring with ∆− 1 colours

like in Step M2 b).
- If j = ∆ − 1 and lj ≥ 2, then we can use multisets of colours (without

a monochromatic set {1}) for colouring edges incident with v ∈ Mj and we
define a colouring with ∆−1 colours like in Step M2 a) and c), but it is more
technical and complicated.

Clearly, each vertex of N1(x) ∪ N2(x) is fixed by every automorphism
preserving the colouring c.

Then for vj ∈ Nj(x), j ≥ 2, we colour all edges vju, u ∈ Nj+1(x), with
distinct colours from {1, . . . ,∆ − 1} and the remaining edges incident to vj
with 2.

Then we recursively colour the edges incident to consecutive spheres Nj(x)
in the same way as previously. It is easily seen that it is always possible.
Hence, all vertices of G′ are fixed by any automorphism ϕ preserving our
colouring c.

It is not difficult to observe that x is the unique vertex of the maximum
degree with the monochromatic palette {1}. �
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3 Some classes of graphs

We say that a graph G is almost spanned by a subgraph H if G−v is spanned
by H for some v ∈ V (G). The following observation will play a crucial role
in this section.

Lemma 13 If a graph G is spanned or almost spanned by a subgraph H,
then

D′(G) ≤ D′(H) + 1.

Proof. We colour the edges of H with colours 1, . . . , D′(H), and all other
edges of G with an additional colour 0. If ϕ is an automorphism of G pre-
serving this colouring, then ϕ(x) = x, for each x ∈ V (H). Moreover, if H
is a spanning subgraph of G − v, then also ϕ(v) = v. Therefore, ϕ is the
identity. �

Traceable graphs

Theorem 14 If G is a traceable graph of order n ≥ 7, then D′(G) ≤ 2.

Proof. Let Pn = v1v2 . . . vn be a Hamiltonian path of G. If G = Pn then
the conclusion follows from Proposition 7. If G is isomorphic to Pn + v1v3,
them we colour the edge v1v3 with 1, and all other edges with 2 breaking
all nontrivial automorphisms of G. Then suppose that G contains an edge
vivj distinct from v1v3 with i < j − 1. Without loss of generality we may
assume that i − 1 ≤ n − j. It is easy to see that at least one of the graphs
Pn+vivj−vj−1vj , Pn+vivj−vj−1 or Pn+vivj−vn is an asymmetric spanning
or almost spanning subgraph of G for any n ≥ 7. The conclusion follows from
Lemma 13. �

The assumption n ≥ 7 is substantial in the above theorem since
D′(K3,3) = 3.
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Claw-free graphs

A K1,3-free graph, called also a claw-free graph, is a graph containing
no copy of K1,3 as an induced subgraph. Claw-free graphs have numerous
applications, e.g., in operations research and scheduling theory. For a survey
of claw-free graphs and their applications consult [6].

A k-tree of a connected graph is its spanning tree with the maximum
degree k. Win [17] investigated spanning trees in 1-tough graphs and proved
the following result.

Theorem 15 [17] A 2-connected claw-free graph has a 3-tree.

We use this result to give an upper bound for the distinguishing number
of claw-free graphs.

Theorem 16 If G is a connected claw-free graph, then D′(G) ≤ 3.

Proof. Assume first that G is 2-connected. Let T be a 3-tree of G. By
Theorem 10 and Theorem 15, we have D′(T ) ≤ 2 if T is neither symmetric
nor bisymmetric tree. Hence, D′(G) ≤ 3 by Lemma13.

Let T be a symmetric tree Th,3. Denote a central vertex of T by x and
its neighbour by a, b, c. Since G is a claw-free graph, there exists in G at
least one edge, say bc, in the neighbourhood of x in T . Define a subgraph
T̃ = T +ab. We colour bc, xa and xb with 1, and xc with 2. Thus all vertices
a, b, c, x are fixed by every nontrivial automorphisms of T̃ . We now colour
the remaining edges in T̃ starting from the edges incident to a, b, c in such
way that two uncoloured adjacent edges obtain two different colours 1 and 2.
This colouring breaks all non-trivial automorphisms of T̃ . Hence, D′(G) ≤ 3
by Lemma 13.

Let T be a bisymmetric tree T ′′
h,3. Denote a central edge by xy and its

neighbours by a, b, c, d. We colour xy, xa and yc with 1, and xb and yd with
2. Since G is a claw-free graph, there exist in G either at least one of edges
by, cx or both ab and cd. We define a subgraph T̃ obtained from the tree T
by adding either one of the edges by, cx or both ab and cd. In the first case
we colour by or cx with 1, in the second case we colour ab with 1 and cd with
2. Now all vertices a, b, c, d, x, y are fixed by every nontrivial automorphism
of T̃ . We then colour the remaining edges of T̃ as above, and we obtain the
claim.
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If a graph G is not 2-connected, then its graph of blocks and cut-vertices
is a path, since G is claw-free. We colour every block according to the rules
described above. Then to break all non-trivial automorphisms of G, it is
enough to ensure that two terminal blocks has no isomorphic colourings. This
is possible by exchanging 1 and 2 in a colouring of edges in a neighbourhood
of a centrum of a spanning tree of G. �

Planar graphs

First, recall that by a famous Theorem of Tutte [14], every 4-connected
planar graph is hamiltonian. Hence its distinguishing index is at most 2,
by Theorem 14. A similar result as for claw-free graphs we obtain for 3-
connected planar graphs. In the proof, we use the following result of Barnette
about spanning trees of such graphs.

Theorem 17 [3] Every 3-connected planar graph has a 3-tree.

Using a similar method as in the proof of Theorem 16, we obtain the
following.

Theorem 18 If G is 3-connected planar graph, then D′(G) ≤ 3.

Proof. Let T be a 3-tree of G. It follows from Theorem 10 that D′(T ) ≤ 2
and hence, D′(G) ≤ 3 by Lemma 13, if T is neither a symmetric nor a
bisymmetric tree.

Let then T be a symmetric tree Th,3. Denote a central vertex by x, and
by Ta, Tb and Tc the connected components of T − x which are trees rooted
at the neighbours a, b, c of a vertex x, respectively. Since G is 3-connected,
there exist an edge e between Ta and Tb in G. Consider a spanning subgraph
T̃ = T + e. Then we colour xa and xc with 1, and xb with 2, and extend this
colouring as in the proof of Theorem 16 to a colouring of T̃ breaking by all
non-trivial automorphisms of T̃ (the colour of e is irrelevant). Consequently,
D′(G) ≤ 3 by Lemma 13.

If T is a bisymmetric tree T ′′
h,3 with and a central edge xy, then we can

add to T one edge in a subtree of T − xy rooted at x, and such a graph can
be easily distinguished by two colours. Again, our claim follows from Lemma
13. �
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2-connected graphs

For a 2-connected planar graph G, the distinguishing index may attain

1+
⌈√

∆(G)
⌉
as it is shown by the complete bipartite graph K2,q with q = r2

for a positive integer r. In this case, D′(K2,q) = r + 1 as it follows from the
result obtained independently by Fisher and Isaak [7] and by Imrich, Jerebic
and Klavžar [11]. They proved exactly the following theorem.

Theorem 19 [7], [11] Let p, q, d be integers such that d ≥ 2 and (d− 1)p <
q ≤ dp . Then

D′(Kp,q) =

{
d, if q ≤ dp − ⌈logd p⌉ − 1,

d+ 1, if q ≥ dp − ⌈logd p⌉ + 1.

If q = dp −⌈logd p⌉ then the distinguishing indexD′(Kp,q) is either d or d+1
and can be computed recursively in O(log∗(q)) time.

In the next section, we make use of the following immediate corollary.

Corollary 20 If p ≤ q, then D′(Kp,q) ≤ ⌈ p
√
q⌉ + 1. �

Moreover, we prove a useful property of distinguishing 2-colourings of
complete bipartite graphs.

Proposition 21 If D′(Kp,q) ≤ 2, then there exists a distinguishing edge 2-
colouring such that the edges in one of colours induce a spanning or an almost
spanning asymmetric subgraph of Kp,q.

Proof. Let P and Q be the two sets of bipartition of Kp,q, and assume p ≤ q.
If p = q, then there exists a spanning asymmetric tree of Kp,p (see [12]).

If p < q, then to prove the claim it suffices to show the existence of a dis-
tinguishing colouring with red and blue, such that at most one vertex in Kp,q

has no red incident edge. Suppose then that there exist two vertices v and
w in P (or both in Q) without any red incident edge. Then a transposition
of v and w is a non-trivial automorphism preserving the colouring, a con-
tradiction. Now, let v be a vertex in P without any red incident edge. It is
not difficult to observe that even if every vertex in P has a distinct number
of incident red edges, then we have q − p + 1 free numbers of possible red
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incident edges. We choose a number i and we colour red i edges between v
and edges in Q with largest number of red incident edges. It is not difficult
to observe that such a colouring is preserved only by the identity. So we have
a spanning or almost spanning red subgraph of Kp,q. �

Corollary 22 If a graph G is spanned by Kp,q and D′(Kp,q) ≤ 2, then
D′(G) ≤ 2. �

In general, for 2-connected graphs we conjecture that the complete bipar-
tite graph K2,r2 is the worst case.

Conjecture 23 If G is a 2-connected graph, then

D′(G) ≤ 1 +
⌈√

∆(G)
⌉
.

4 Nordhaus-Gaddum inequalities for D′

In this section, we discuss Conjecture 6, formulated at the end of Introduc-
tion, stating that

2 ≤ D′(G) +D′(G) ≤ ∆+ 2

for every admissible graph G of order n ≥ 7, where ∆ = max{∆(G),∆(G)}.
The left-hand inequality is obvious. Indeed, if a graph G is asymmetric,

then so isG. Thus we are only interested in the right-hand inequality D′(G)+
D′(G) ≤ ∆ + 2. Note also that at least one of the graphs G and G is
connected.

The bound ∆+2 cannot be improved. To see this, consider a star K1,n−1

of any order n ≥ 7. As K1,n−1 is a disjoint union of a complete graph Kn−1

and an isolated vertex, it follows from Proposition 9 that D′(K1,n−1) = 2.
Therefore, D′(K1,n−1) +D′(K1,n−1) = n− 1 + 2 = ∆+ 2.

If T is a tree, then ∆(T ) can be much smaller than ∆ = ∆(T ) = n − 1.
However, the following holds.

Proposition 24 If T is a tree of order n ≥ 7, then

D′(T ) +D′(T ) ≤ ∆(T ) + 2.
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Proof. As it was shown above, the conclusion holds for stars. If T is not a
star, then D′(T ) ≤ 2 by Lemma 13. Indeed, as it was proved by Hedetniemi
et al. in [9], every two trees distinct from a star can be packed into Kn.
Thus, the complement T contains a spanning asymmetric tree. By Theorem
10, we have the inequality D′(T ) +D′(T ) ≤ ∆(T ) + 2. �

This fact emboldened us to formulate the following stronger conjecture.

Conjecture 25 Every connected admissible graph G of order n ≥ 7 satisfies
the inequality

D′(G) +D′(G) ≤ ∆(G) + 2.

Now we show that Conjecture 6 holds not only for trees, but also for some
other classes of graphs. To do this we use the following fact.

Theorem 26 Let G be a connected admissible graph of order n ≥ 7. If
either G or G has the distinguishing index at most 3, then

D′(G) +D′(G) ≤ ∆+ 2,

where ∆ = max{∆(G),∆(G)}.

Proof.
Case A. Let D′(G) ≤ 3.
Then D′(G) ≤ ∆(G) − 1, and if G is connected, then our claim holds.

Assume now that G is disconnected. Then G is spanned by Kp,q with p ≤ q
and ∆ = q. Suppose that a graph G has t isomorphic components. If we had
a distinct set of three colours for every component, then D′(G) ≤ ⌈ 3

√
6t⌉. We

then consider two cases:

• If q ≤ 2p−⌈log2 p⌉−1, then D′(G) = 2 by Theorem 19 and Theorem 22.
Moreover, we then have at most n

3
connected components of G, so

D′(G) ≤ ⌈ 3
√
2n⌉. And we can easily check that

⌈ 3
√
2n⌉+ 2 ≤ n

2
+ 2

for every n ≥ 4.
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• If q ≥ 2p − ⌈log2 p⌉ − 1, then there exists a big connected component
(of order q) in G and we can assume that t ≤ p

3
remaining components

are isomorphic (p ≥ 6). In this case, by assumptions we have p ≤
⌈log2(q + 1)⌉, therefore

D′(G) ≤ ⌈ 3
√
6t⌉ ≤ 3

√
2⌈log2(q + 1)⌉.

On the other hand we have D′(G) ≤ ⌈ p
√
q⌉ + 2 by Theorem 20 and

Theorem 13. Then it is not difficult to check that

3
√
2⌈log2(q + 1)⌉+ ⌈ p

√
q⌉ + 2 ≤ q + 2

what finishes the proof.

Case B. Let D′(G) ≤ 3.
If G is connected, then we obtain our claim by Theorem 12. Assume now,

that G has t ≥ 2 connected components. Then ∆ ≥ n
2
and, in the worst case,

all connected components of G are isomorphic. Observe that the maximal
degree of every component is at most n

t
−1. If we assign one unique colour to

every component, then we need at most n
t
−1+ (t−1) colours to distinguish

G. Hence, if
n

t
+ t ≤ n

2
− 1,

then D′(G) ≤ ∆−1, and our claim is true. The above inequality holds unless
t = 2.

If there exist two isomorphic connected components in G, then D′(G) ≤ 2
due to Corollary 22 since G is spanned byKn

2
,n
2
. Then D′(G) ≤ n

2
, and finally

D′(G) +D′(G) ≤ n
2
+ 2. �

We now can formulate some consequences of Theorem 26 and suitable
results proved in Section 3.

Corollary 27 Let G be a connected admissible graph of order n ≥ 7. If G
satisfies at least one of the following conditions:

• traceable graphs,

• claw-free graphs,

14



• triangle-free graphs,

• 3-connected planar graphs,

then
D′(G) +D′(G) ≤ ∆+ 2,

where ∆ = max{∆(G),∆(G)}.

Proof. It suffices to apply Theorem 26 together with Theorem 14, Theo-
rem 16 and Theorem 18, respectively. Observe also that if the girth of a
graph G is at least 4, i.e., G is triangle-free, then its complement G is claw-
free. �

Finally, it has to be noted that there exist graphs of order less than 7 such
that the right-hand inequality in Conjecture 6 is not satisfied. For example,
for the graph K3,3 we have D′(K3,3) = D′(K3,3) = 3 and ∆ = 3, hence
D′(K3,3) +D′(K3,3) = ∆ + 4. Also, D′(C5) +D′(C5) = 3 + 3 = ∆ + 4, and
D′(K1,i) +D′(K1,i) = ∆ + 3 for i = 3, 4, 5.
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[12] R. Kalinowski and M. Piĺsniak, Distinguishing graphs by edge colour-
ings, European J. Combin. 45 (2015), 124–131.

[13] E. A. Nordhaus and J. W. Gaddum, On Complementary Graphs, Amer.
Math. Monthly 63 (1956), 175-177.

[14] W. T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82
(1956), 99–116.

[15] V. G. Vizing, The chromatic class of multigraphs, Kibernetika 1 (1965),
29-39.

[16] H. Whitney, Non-separable and planar graphs, Trans. Amer. Math. Soc.
34 (1932), 339-362,

[17] S. Win, On a Connection Between the Existence of k-Trees and Tough-
ness of Graphs, Graphs and Combin. 5 (1989), 201-205,

[18] A. A. Zykov, On Some Properties of Linear Complexes, Math. Sbornik.
NS, 24 (1949), 163-188.

16


